Pages
Download article

Application of pulsed and high-frequency electron paramagnetic resonance techniques to study petroleum disperse systems

M.R. Gafurov, A.A. Ponomarev, G.V. Mamin, A.A. Rodionov, F.F. Murzakhanov, T. Arash, S.B. Orlinskii

Review article

DOI https://doi.org/10.18599/grs.2020.4.2-14

2-14
rus.
eng.

open access

Under a Creative Commons license
The spectral and relaxation characteristics of “free” organic radicals (FR) and vanadyl-porphyrin (VP) complexes in various petroleum disperse systems (PDS) like bitumen, petroleum, their high-molecular components and solutions were studied using stationary (conventional) and pulsed electron paramagnetic resonance (EPR) techniques in two frequency ranges (X- and W-bands, with the microwave radiation frequencies of about 9 GHz and 95 GHz, respectively). The features of the pulsed approaches (electron spin echo, modulation of the electron spin echo signal decay, electronic relaxation times) and high-frequency EPR for PDS investigations were examined. W-band EPR allows to resolve spectrally the lines from the different paramagnetic centers and more accurately determine their spectral characteristics. It is shown that the electron spin echo can be observed at room temperatures even at high magnetic fields of 3.4 T demonstrating the potential of application of pulsed EPR techniques for the low-cost oilfield measurements. Analysis of the VP transverse magnetization decay curve permits to identify electron-nuclear interactions with the 14N and 1H nuclei in situ while in the EPR spectra these hyperfine interactions usually cannot be detected. It is found from the W-band EPR measurements that FR lineshape cannot be fitted with isotropic parameters in contrast to the established X-band results. The observed effect of increasing the rates of electronic transverse relaxation in asphaltenes is described in the framework of a model of spectral diffusion between the fast- and slow-relaxing paramagnetic centers in supramolecular complexes of asphaltenes.
 

Electron paramagnetic resonance, petroleum disperse systems, asphaltenes

 

  • Abragam A., Bleaney B. (1970). Electron Paramagnetic Resonance of Transition Ions. Oxford: Clarendon press.
  • Abyzgildin Yu.N., Mikhailyuk Yu.N., Yarullin K.S., Rostovskaya A.A. (1977). Porphyrins and metal porphyrin complexes of oils. Moscow: Nauka, 88 p. (In Russ.)
  • Acevedo S., Guzman K., Ocanto O. (2010). Determination of the number average molecular mass of asphaltenes (Mn) using their soluble A2 fraction and the vapor pressure osmometry (VPO) technique. Energy & Fuels, 24(3), pp. 1809–1812. https://doi.org/10.1021/ef9012714
  • Al-Muntaser A.A., Varfolomeev M.A., Suwaid M.A. et al. (2020). Hydrothermal upgrading of heavy oil in the presence of water at sub-critical, near-critical and supercritical conditions, Journal of Petroleum Science and Engineering, 184, 106592. https://doi.org/10.1016/j.petrol.2019.106592
  • Alexandrov A.S., Ivanov A.A., Archipov R.V., Gafurov M.R., Tagirov M.S. (2019). Pulsed NMR spectrometer with dynamic nuclear polarization for weak magnetic fields. Magnetic Resonance in Solids, 21(2), pp. 19203 (1–6). https://doi.org/10.26907/mrsej-19203
  • Cui Q., Ma X., Nakano K., Nakabayashi K., Miyawaki J., Al-Mutairi A. et al. (2018). Hydrotreating reactivities of atmospheric residues and correlation with their composition and properties. Energy & Fuels, 32(6), pp. 6726–6736. https://doi.org/10.1021/acs.energyfuels.8b01150
  • Cui Q., Nakabayashi K., Ma X., Ideta K., Miyawaki J., Marafi A.M. et al. (2017). Examining the molecular entanglement between V=O complexes and their matrices in atmospheric residues by ESR. RSC advances, 7(60), pp. 37908–37914. https://doi.org/10.1039/C7RA06436E
  • Davydov V.V., Dudkin V.I., Myazin N.S., Rud’ V.Yu. (2018). Peculiarity of the Nuclear Magnetic Resonance Method Application for the Liquid Medium Flow Parameters Control. Applied Magnetic Resonance, 49(7), pp. 665–679. https://doi.org/10.1007/s00723-018-0994-1
  • Deligiannakis Y., Louloudi M., & Hadjiliadis N. (2000). Electron spin echo envelope modulation (ESEEM) spectroscopy as a tool to investigate the coordination environment of metal centers. Coordination Chemistry Reviews, 204(1), pp. 1–112. https://doi.org/10.1016/S0010-8545(99)00218-0
  • Di Mauro E., Guedes, C.L.B., Nascimento O.R. (2005). Multifrequency (X-band to W-band) CW EPR of the organic free radical in petroleum asphaltene. Applied Magnetic Resonance, 29(4), pp. 569–575. https://doi.org/10.1007/BF03166333
  • Dickson F.E., Kunesh, C.J., McGinnis E.L., Petrakis L. (1972). Use of electron spin resonance to characterize the vanadium (IV)-sulfur species in petroleum. Anal. Chem., 44(6), pp. 978–981. https://doi.org/10.1021/ac60314a009
  • Dikanov S.A., Tsvetkov Y.D. (1992). Electron Spin-Echo Envelope Modulation (ESEEM) Spectroscopy. USA: CRC Press, 432 p.
  • Dolomatov M., Gafurov M., Rodionov A., Mamin G., González L.M., Vakhin A., Petrov A., Bakhtizin R., Khairudinov I., Orlinskii, S. (2018). Low-temperature thermal decomposition of heavy petroleum distillates: interconnection between the electrical properties and concentration of paramagnetic centres. IOP Conf. Ser.: Earth Environ. Sci., 155, 012007. https://doi.org/10.1088/1755-1315/155/1/012007
  • Dolomatov M.U., Rodionov A.A., Gafurov M.R., Petrov A.V., Biktagirov T.B., Bakhtizin R.Z., Makarchikov S.O., Khairudinov I.Z. and Orlinskii S.B. (2016). Concentration of paramagnetic centres at low-temperature thermal destruction of asphaltenes of heavy petroleum distillates. Magnetic Resonance in Solids, 18, 16101. http://mrsej.kpfu.ru/contents.html#16101
  • Dzuba S.A. (2013). Structural studies of biological membranes using ESEEM spectroscopy of spin labels and deuterium substitution. Journal of Structural Chemistry, 54(S1), pp. 5–18. (In Russ.)
  • Eaton, G.R., Eaton, S.S., Barr, D.P., Weber, R.T. (2010). Quantitative EPR. Vienna: Springer-Verlag Wien. https://doi.org/10.1007/978-3-211-92948-3
  • Gafurov M.R., Volodin M.A., Rodionov et al. (2018). EPR study of spectra transformations of the intrinsic vanadyl-porphyrin complexes in heavy crude oils with temperature to probe the asphaltenes’ aggregation. Journal of Petroleum Science and Engineering, 166, pp. 363–368. https://doi.org/10.1016/j.petrol.2018.02.045
  • Galukhin A., Bolmatenkov D., Osin Y. (2018). Heavy oil oxidation in the nano-porous medium of synthetic opal, RSC Adv., 8, pp. 18110–18116. https://doi.org/10.1039/C8RA02822B
  • Garif’yanov N.S., Kozyrev B.M. (1956). Paramagnetic resonance in anthracite and other carbon-containing substances. Zh. Eksp. Teor. Fiz., 30(2), pp. 272–276. (In Russ.)
  • Gilinskaya L.G. (2008). EPR spectra of complexes V (IV) and the structure of petroleum porphyrins. Journal of Structural Chemistry, 49(2), pp. 245–254. (In Russ.)
  • Gizatullin B., Gafurov M., Vakhin et al. (2019). Native Vanadyl Complexes in Crude Oil as Polarizing Agents for In Situ Proton Dynamic Nuclear Polarization. Energy & Fuels, 33(11), pp. 10923–10932. https://doi.org/10.1021/acs.energyfuels.9b03049
  • Gizatullin B., Gafurov, M., Rodionov A., Mamin, G., Mattea, C., Stapf, S., Orlinskii, S. (2018). Proton–Radical Interaction in Crude Oil – A Combined NMR and EPR Study. Energy & fuels, 32(11), pp. 11261–11268. https://doi.org/10.1021/acs.energyfuels.8b02507
  • Gracheva I, Gafurov M., Mamin G., Biktagirov T., Rodionov A., Galukhin V., Orlinskii S.B. (2016). ENDOR Study of Nitrogen Hyperfine and Quadropole Tensors in Vanadyl Porhyrins of Heavy Crude Oils. Magnetic Resonance in Solids, 18, 16102. http://mrsej.kpfu.ru/contents.html#16102
  • Gutowsky H., Roger Ray B., Rutledge R., Unterberger R. (1958). Carbonaceous Free Radicals in Crude Petroleum. J. Chem. Phys., 28, pp. 744–745. https://doi.org/10.1063/1.1744250
  • Il’yasov A.V. (1962). Determination of vanadium content in oils and petroleum products by EPR method. Chemistry and Technology of Fuels and Oils, 9, pp. 63–67. (In Russ.)
  • Il’yasov A.V., Garif’yanov N.S., Ryzhmanov Yu.S. (1961). Electron paramagnetic resonance in some types of natural oils and their heavy fractions. Chemistry and Technology of Fuels and Oils, 1, pp. 28–31. (In Russ.)
  • Ilyin S.O., Arinina M.P., Polyakova M.Y. et al. (2016). Rheological comparison of light and heavy crude oils. Fuel, 186, pp. 157–167. https://doi.org/10.1016/j.fuel.2016.08.072
  • Khasanova N.M., Gabdrakhmanov D.T., Kayukova G.P., Morozov V.P., Mikhaylova A.N. (2017). EPR study of hydrocarbon generation potential of organic-rich domanik rocks, Magnetic Resonance in Solids, 19(1), 17102.
  • Mamin G., Gafurov M., Yusupov R., Gracheva I., Ganeeva Y., Yusupova T., Orlinskii S.B. (2016). Toward the Asphaltene Structure by Electron Paramagnetic Resonance Relaxation Studies at High Fields (3.4 T). Energy & Fuels, 30(9), pp. 6942–6946. https://doi.org/10.1021/acs.energyfuels.6b00983
  • Martyanov O.N., Larichev Y.V., Morozov E.V., Trukhan S.N., Kazarian S.G. (2017). The stability and evolution of oil systems studied via advanced methods in situ. Russ. Chem. Rev., 86, pp. 999–1023. https://doi.org/10.1070/RCR4742
  • Mehrabi-Kalajahi S.S, Varfolomeev M.A, Yuan C. et al. (2018). EPR as a complementary tool for the analysis of low-temperature oxidation reactions of crude oils. Journal of Petroleum Science and Engineering, 169, pp. 673–682. https://doi.org/10.1016/j.petrol.2018.05.049
  • Mukhamatdinov I., Gafurov M., Kemalov A., et al. (2018). Study of the oxidized and non-oxidized bitumen modified with additive «Adgezolin» by using electron paramagnetic resonance. IOP Conf. Ser.: Earth Environ. Sci., 155, 012004. https://doi.org/10.1088/1755-1315/155/1/012004
  • Mukhamatdinov I.I., Salih I.Sh.S., Rakhmatullin I.Z., Sitnov S.A., Laikov A.V., Klochkov V.V., Vakhin A.V. (2020). Influence of Co-based catalyst on subfractional composition of heavy oil asphaltenes during aquathermolysis, Journal of Petroleum Science and Engineering, 186, 106721. https://doi.org/10.1016/j.petrol.2019.106721
  • Mullins O., Pomerantz A.E., Zuo J., Dong C., Annu J. (2014). Downhole fluid analysis and asphaltene science for petroleum reservoir evaluation. Rev. Chem. Biomol. Eng., 5, pp. 325–345. https://doi.org/10.1146/annurev-chembioeng-060713-035923
  • Murav’ev F.A., Vinokurov V.M., Galeev A.A., Bulka G.R., Nizamutdinov N.M., Khasanova N.M. (2006). Paramagnetism and nature of dispersed organic matter in the Permian deposits of Tatarstan. Georesursy = Georesources, 2(19), pp. 40–45. (In Russ.)
  • Nesterov I.I., Alexandrov V.M., Ponomarev A.A., Zavatsky M.D., Lobodenko E.I., Kobylinskiy D.A., Kadyrov M.A. (2019). Experimental studies of radical reactions of hydrocarbons conversion. Oil and Gas Studies, 4, pp. 57–69. (In Russ.) https://doi.org/10.31660/0445-0108-2019-4-57-69
  • O’Reilly, D. (1958). Paramagnetic Resonance of Vanadyl Etioporphyrin I. J. Chem. Phys., 29(5), pp. 1188–1189. https://doi.org/10.1063/1.1744684
  • Piccinato M., Guedes C., Di Mauro E. (2012). Petroleum Asphaltenes. Crude Oil Emulsions – Composition Stability and Characterization. Ed. M. Abdul-Raouf. Rjeka: InTech, pp. 147–168.
  • Ponomarev A.A. (2019). The mechanism of cracking hydrocarbons in electromagnetic fields – to the question of oil in Bazhenov formation. Oil and Gas Studies, 1, pp. 14–18. (In Russ.) https://doi.org/10.31660/0445-0108-2019-1-14-18
  • Qin P, Warncke K. (2015a). Electron Paramagnetic Resonance Investigations of Biological Systems by Using Spin Labels, Spin Probes, and Intrinsic Metal Ions. Part A. Methods in Enzymology, 563, pp. 2–684.
  • Qin P., Warncke K. (2015b). Electron Paramagnetic Resonance Investigations of Biological Systems by Using Spin Labels, Spin Probes, and Intrinsic Metal Ions. Part B. Methods in Enzymology, 564, pp. 2–613.
  • Raghunathan P. (1991). Evidence for fractal dimension in asphaltene polymers from electron-spin-relaxation measurements. Chem. Phys. Lett. 182, pp. 331–335. https://doi.org/10.1016/0009-2614(91)80224-L
  • Ramachandran V., van Tol, J., McKenna A., Rodgers R., Marshall A., Dalal N. (2015). High Field Electron Paramagnetic Resonance Characterization of Electronic and Structural Environments for Paramagnetic Metal Ions and Organic Free Radicals in Deepwater Horizon Oil Spill Tar Balls. Anal. Chem., 87(4), pp. 2306–2313. https://doi.org/10.1021/ac504080g
  • Reijerse E.J., Tyryshkin A.M., Dikanov S.A. (1998). Complete determination of nitrogen quadrupole and hyperfine tensors in an oxovanadium complex by simultaneous fitting of multifrequency ESEEM powder spectra. Journal of Magnetic Resonance, 131(2), pp. 295–309. https://doi.org/10.1006/jmre.1997.1339
  • Safieva R.Z. (2004). Chemistry of oil and gas. Petroleum Dispersed Systems: Composition and Properties. Part 1. Moscow: Gubkin Russian State University of Oil and Gas, 112 p. (In Russ.)
  • Sapunov V.A., Denisov A.Y., Saveliev D.V. et al. (2016). New vector/scalar Overhauser DNP magnetometers POS-4 for magnetic observatories and directional oil drilling support. Magnetic Resonance in Solids, 18(2), 16209.
  • Sapunov V.A., Kashin I.V., Ushakov V.A. et al. (2019). Little-known aspects of Overhauser DNP at zero and low magnetic fields stimulated by parallel electron pumping of nitroxide radicals solutions. AIP Conf. Proc., 2174, 020112. https://doi.org/10.1063/1.5134263
  • Schweiger A., Jeschke G. (2001). Principles of Pulse Electron Paramagnetic Resonance. Oxford: OUP.
  • Stoll S., Schweiger A. (2006). EasySpin, a comprehensive software package for spectral simulation and analysis in EPR. ournal of Magnetic Resonance, 178, pp. 42–55. https://doi.org/10.1016/j.jmr.2005.08.013
  • Syunyaev Z.I. (1980). Concentration of complex structural units in petroleum dispersed systems and methods of its regulation. Chemistry and Technology of Fuels and Oils, 16(7), pp. 484–489. (In Russ.)
  • Syunyaev Z.I., Safieva R.Z., Syunyaev R.Z. (1990). Petroleum dispersed systems. Moscow: Chemistry, 224 p. (In Russ.)
  • Tayeb Ben K., Delpoux O., Barbier J., Marques J., Verstraete J., Vezin H. (2015). Applications of Pulsed Electron Paramagnetic Resonance Spectroscopy to the Identification of Vanadyl Complexes in Asphaltene Molecules. Part 1: Influence of the Origin of the Feed. Energy & Fuels, 29(7), pp. 4608–4615. https://doi.org/10.1021/acs.energyfuels.5b00733
  • Trukhan S., Yudanov V., Gabrienko A., Subramani V., Kazarian S., Martyanov O. (2014). In Situ Electron Spin Resonance Study of Molecular Dynamics of Asphaltenes at Elevated Temperature and Pressure. Energy & Fuels, 28(10), pp. 6315–6321. https://doi.org/10.1021/ef5015549
  • Vakhin A.V., Aliev F.A., Mukhamatdinov I.I., Sitnov S.A., Sharifullin A.V., Kudryashov S.I., Afanasiev I.S., Petrashov O.V., Nurgaliev D.K. (2020). Catalytic Aquathermolysis of Boca de Jaruco Heavy Oil with Nickel-Based Oil-Soluble Catalyst. Processes, 8(5), 532. https://doi.org/10.3390/pr8050532
  • Volodin M.A., Mamin G.V., Izotov V.V., & Orlinskii S.B. (2013). High-frequency EPR study of crude oils. J. Phys.: Conf. Ser., 478, 012003. https://doi.org/10.1088/1742-6596/478/1/012003
  • Wang W., Ma Y., Li S., Shi J., Teng J. (2016). Effect of Temperature on the EPR Properties of Oil Shale Pyrolysates. Energy & Fuels, 30(2), pp. 830–834. https://doi.org/10.1021/acs.energyfuels.5b02211
  • Yakubov M.R., Milordov D.V., Yakubova S.G., Morozov V.I. (2017). Vanadium and paramagnetic vanadyl complexes content in asphaltenes of heavy oils of various productive sediments. Petroleum Science and Technology, 35(14), pp. 1468–1472. https://doi.org/10.1080/10916466.2017.1344708
  • Yakubova S.G., Abilova G.R., Tazeeva, E.G., Borisova Y.Y., Milordov D.V., Mironov N.A., Yakubov M.R. (2019). Distribution of Vanadium and Nickel in the Case of Two-Step Solvent Fractionation of Asphaltenes of Heavy Oils. Petroleum Chemistry, 59(1), pp. S30–S36. https://doi.org/10.1134/S0965544119130140
  • Yen T., Chilingarian G. (1994). Asphaltenes and asphalts. 1. Developments in petroleum science. 40A. New York: Elsevier. https://doi.org/10.1016/S0376-7361(09)70248-1
  • Yen T., Chilingarian G. (2000). Asphaltenes and asphalts, 2. Developments in petroleum science. 40 B. New York: Elsevier.
  • Yen T.F., Erdman J.G., Saraceno A.J. (1962). Investigation of the Nature of Free Radicals in Petroleum Asphaltenes and Related Substances by Electron Spin Resonance. Analytical Chemistry, 34(6), pp. 694–700. https://doi.org/10.1021/ac60186a034
  • Zavoisky E. (1945). Paramagnetic Relaxation of Liquid Solutions for Perpendicular Fields. Journal of Physics (Academy of Sciences of the USSR), 9(3), pp. 211–216.
  • Zhang Y., Siskin M., Gray M.R., Walters C.C., Rodgers R.P. (2020). Mechanisms of Asphaltene Aggregation: Puzzles and a New Hypothesis. Energy & Fuels, 34(8), pp. 9094–9107. https://doi.org/10.1021/acs.energyfuels.0c01564
  • Zhao X., Xu, C., Shi Q. (2015). Porphyrins in Heavy Petroleums: A Review. In: Xu C., Shi Q. (ed.) Structure and Modeling of Complex Petroleum Mixtures. Structure and Bonding, 168. Springer, Cham. https://doi.org/10.1007/430_2015_189
  •  
Marat R. Gafurov
Kazan Federal University
16a Kremlevskaya st., Kazan, 420008, Russian Federation
 
Andrey A. Ponomarev
Tyumen Industrial University
38 Volodarsky st., Tyumen, 625000, Russian Federation
 
Georgiy V. Mamin
Kazan Federal University
18 Kremlevskaya st., Kazan, 420008, Russian Federation
 
Alexander A. Rodionov
Kazan Federal University
18 Kremlevskaya st., Kazan, 420008, Russian Federation
 
Fadis F. Murzakhanov
Kazan Federal University
18 Kremlevskaya st., Kazan, 420008, Russian Federation
 
Tajik Arash
Kazan Federal University
4 Kremlevskaya st., Kazan, 420008, Russian Federation
 
Sergey B. Orlinskii
Kazan Federal University
18 Kremlevskaya st., Kazan, 420008, Russian Federation
 

For citation:

Gafurov M.R., Ponomarev A.A., Mamin G.V., Rodionov A.A., Murzakhanov F.F., Arash T., Orlinskii S.B. (2020). Application of pulsed and high-frequency electron paramagnetic resonance techniques to study petroleum disperse systems. Georesursy = Georesources, 22(4), pp. 2–14. DOI: https://doi.org/10.18599/grs.2020.4.2-14