Pages
Download article

Application of gamma-ray spectroscopy and IR-spectroscopy methods for the purposes of ore geology in the Timan-Pechora Oil and Gas Province (the case of Ukhta Region)

I.R. Makarova, N.N. Laptev, S.A. Gorobets, F.F. Valiev, A.M. Yafyasov, V.O. Sergeev, A.I. Zippa, N. A. Sukhanov, D.K. Makarov, A.S. Grishkanich

Original article

DOI https://doi.org/10.18599/grs.2021.1.2

17-29
rus.

open access

Under a Creative Commons license
Two express methods are presented in this paper. The first method is a high-resolution gamma-spectroscopic method based on a germanium detector, the second method is an IR-spectroscopic method. The applied complex of methods allows to determine the sources of uranium and thorium, identify the rhythms of uranium accumulation associated with regional events; identify areas with a high content of uranium due to the influence of local sources (faults, hydrothermal, etc.); determine the amount of authigenous uranium in the composition of total uranium; determine thermal maturity of organic matter in shales without their preliminary demineralization. To identify levels of increased uranium intensity in the high-carbon strata, a set of indicators has been proposed, which includes both applied indicators in practice of geological work and new indicators.
New indicators have been tested on the collection of shale reference samples. For them, values ​​were established that characterize the processes of uranium accumulation and uranium removal. On the example of Ukhta Region according to the proposed indicators, the sections from the Vendian-Riphean to Domanic inclusive were interpreted.
The performed work showed the possibility of comparing the calculated gamma-spectroscopic data with the data of other methods. This opens up a broader perspective for the use of express non-destructive gamma-spectroscopic method for detecting levels with a high content of uranium in the shale rocks, to which ore-bearing concentrations of a number of metals are also confined.
 

Uranium, thorium, domanic suite, shale, kaolinite clays, gamma-spectroscopy, IR-spectroscopy, neutron activation method, method of chromatography-mass-spectrometry data with inductively coupled plasma (ICP MS)

 

  • Berg N.V., Sivash N.S., Bogdanov B.P. (2012). Interrelation of sulphide mineralization and hydrocarbon accumulations - evidence from Timan-Pechora areas. Neftegazovaya Geologiya. Teoriya I Praktika, 7(3). http://www.ngtp.ru/rub/4/49_2012.pdf (In Russ.)
  • Chernov M.S., Krupskaya V.V., Kuznetsov R.A., Rychagov S.N., Sokolov V.N. (2019). Kaolinite of hydrothermal clays of the Pauzhetsko-Kambalno-Koshelevsky geothermal Region (Southern Kamchatka). Proc. XXII All-Russ. Sci. Conf.: Volcanism and the related processes. Petropavlovsk-Kamchatsky: Institute of Volcanology and Seismology DVO RAN, pp. 240–243. (In Russ.)
  • Dyatlova E.M., Bobkova N.M., Sergievich O.A. (2019). IR-spectroscopic study of kaolin raw materials from Belorussian deposits. problemy nedropolzovaniya, 2, pp. 143–149. (In Russ.)
  • Geological dictionary (1973). Ed. K.N. Paffenholz et al. Moscow: Nedra. (In Russ.)
  • Gorobets S.A., Makarova I.R., Sivash N.S., Laptev N.N., Valiev F.F., Yafyasov A.M., Sokolov M.A., Zippa A.I., Sergeev V.O., Sukhanov N.A., Makarov D.K., Mikhailovsky V.Y. (2018). Method for determining metals in rocks and fluids of fracture zones. Patent RF. RU 2659109. (In Russ.)
  • Grigoriev N.A. (2003). Average content of chemical elements in rocks composing the upper part of the continental crust. Geokhimiya, 7, pp. 785–792. (In Russ.)
  • Ivanov V.P. (2016). Integrated assessment of Carboniferous-Permian coal-bearing deposits and development of industrial-and-energy classification of fossil coals. Abstract Dr. geol. and min. sci. diss. Tomsk, 43 p. (In Russ.)
  • Laptev N.N., Chalov D.Y., Chalov Y.V., Turtsevich K.G., Zubov A.A., Gorobets S.A., Goldobin A.Y., Milyaev V.L., Sivash N.S., Sergeev V.O., Valiev F.F., Zippa A.I., Sukhanov N.A., Makarov D.K., Makarova I.R. (2017). Method for determining the content of vanadium and rare-earth elements using gamma activity of sedimentary rocks. Patent RF. RU 2636401. (In Russ.)
  • Makarova I. R., Sukhanov A. A., Chelyshev S. S., Valiev F. F., Sergeev V. O., Zippa A.I. (2015). Physical and geophysical methods for prompt  determination of hydrocarbon generation and migration zones in the domanicoid rocks. Proc. Int. Conf.: Hard-to-recover reserves and unconventional sources of hydrocarbons. Saint Petersburg: VNIGRI, 8 p. (In Russ.)
  • Makarova I.R. (2017). The Integrated Study of the Elements Geofluid System in the South Timan-Pechora Oil and Gas Region by Complex Physical Methods. 3-rd World Congress on Materials Science, Engineering, Oil, Gas and Petrochemistry. Spain, Barcelona, р. 94.
  • Makarova I.R., Grokhotov E.I. (2017). The determination of domanicits types as the elements of geofluid system. EAGE/SPE: The science of shale. Problems of exploration and development. Moscow, 4 p. (In Russ.)
  • Neruchev S.G. (1982). Uranus and Life in the history of Earth. Leningrad: Nedra, 208 p. (In Russ.)
  • Neruchev S.G., Rogozina E.K. (1986). Oil-and-gas formation in the sediments of domanic type. Leningrad: Nedra, 247 p. (In Russ.)
  • Parmuzin N.M., Yakobson K.E., Vovshina A.Yu., Voinova O.A. et al. (2016). State geological map of the Russian Federation. Scale 1:1,000,000 (third generation). Mezenskaya series - Sheet Р-39 (Syktyvkar). St.Petersburg: VSEGEI, 478 p. (In Russ.)
  • Perelman A.I., Kasimov N.S. (2000). Geochemistry of the landscape. Moscow: Astreya-2000. 763 p. (In Russ.)
  • Plyusnina I.I. (1967). Infrared spectra of silicates. Moscow: MSU, 189 p. (In Russ.)
  • Plyusnina I.I. (1977). Infrared spectra of minerals. Moscow: MSU, 175 p. (In Russ.)
  • Prishchepa O.M., Sukhanov A.A., Makarova I.R. (2014). Approaches to the estimation of domanic deposits of Timan-Pechora oil-and-gas province as unconventional sources of hydrocarbons. Neftegazovaya Geologiya. Teoriya I Praktika, 9(4). https://doi.org/10.17353/2070-5379/46_2014 (In Russ.)
  • Rumi M.Kh., Irmatova Sh.K., Zufarov M.A., Fayziev Sh.A., Mansurova E.P., Urazaeva E.M., Nurmatov P.R., Provotorov D.A. (2018). The study of compositions based on parkent kaolin clay. Novye Ogneupory (New Refractories), 11, pp. 29–33. (In Russ.)
  • Sergeeva A.V. (2018). Dikkit from Verkhne-Koshelevskaya thermal anomaly (Southern Kamchatka). Proc. XXI Regional Sci. Conf.  Petropavlovsk-Kamchatsky: Institute of Volcanology and Seismology DVO RAN, pp. 204–206. (In Russ.)
  • Sidorova E.Yu., Sitdikova L.M. (2013). The clay mineral associations of ancient weathering crusts - potential reservoir zones of the crystalline basement of the Tatar Arch. Georesursy=Georesources, 5, pp. 3–7. http://dx.doi.org/10.18599/grs.55.5.1 (In Russ.)
  • Sivash N.S., Berg N.V. (2010). Mineralogy of polymetallic ore occurrences of the Ukhta area. Proc. Russian Mineralogical Society: Modern Mineralogy: from theory to practice. Saint-Petersburg: RMO, pp. 19–21. (In Russ.)
  • Sivash N.S., Makarova I.R., Muravieva M.K. (2016). Model of distribution of hydrocarbon and ore components of geofluidic systems in the sedimentary cover of the Ukhta District. Proc. V Kudryavtsev’s Readings. All-Russian Conference on the deep genesis of oil and gas. Moscow, 4 p. (In Russ.)
  • Sukhanov A.A., Sergeev V.O., Valiev F.F., Makarova I.R., Yafyasov A.M. (2014). Application of physical methods to characterize the organic matter of dictionem shales in the Leningrad Region. Bulletin of Saint Petersburg University, Series 4, 1, pp. 32–36. (In Russ.)
  • Tarasevich B.N. (2012). IR-spectra of the main classes of organic compounds. Reference materials. Moscow: MSU, 55 p. (In Russ.)
  • Yevtushenko E.I., Sysa O.K., Lyashenko O.V., Novoselov A.G. (2012). Integrated analysis of structural changes in hydrothermal-stabilized kaolins. Vestnik BGTU im. V.G. Shukhova, 3, pp. 150–154. (In Russ.)
  • Yukhtanov P.P., Antoshkina A.I., Saldin V.A., Tsyganko V.S., Burtsev I.N. (2008). Geological heritage of the Komi Republic. Syktyvkar: Institute of Geology, UB RAS, 358 p. (In Russ.)
  • Yumanov F.L., Sivash N.S., Ivanov N.F. and others (2013). State geological map of the Russian Federation. Scale 1 : 200 000. Timanskaya Series. Sheet P-39-VI (Ukhta). Moscow: VSEGEI, 251 p. (In Russ.)
  • Yurichev A.N. (2015). Metasomatism (main aspects). Tomsk: TGU Publ., 116 p. (In Russ.)
  • Zakharov V.D., Kozulin A.H. (1979). Oil and gas of the Komi ASSR:. Syktyvkar: Komi book publ., 44 p. (In Russ.)
  • Zavyalov V.A. (1966). Geochemistry and trace elements of domanic formations of South Pritimanye. Moscow: Nauka, 156 p. (In Russ.)
  •  

Irina R. Makarova
Leading Geologist of the Petrophysic LLC
5, Shevchenko st., Nizhnii Domanik vill., pgt Yarega, Ukhta, 169347, Russian Federation
e-mail: makarova_i_r@mail.ru

Nikolay N. Laptev
Petrophysic LLC
5, Shevchenko st., Nizhnii Domanik vill., pgt Yarega, Ukhta, 169347, Russian Federation

Semen A. Gorobets
Petrophysic LLC
5, Shevchenko st., Nizhnii Domanik vill., pgt Yarega, Ukhta, 169347, Russian Federation

Farhat F. Valiev
Saint Petersburg State University
1, Ulyanovskaya st., Saint Petersburg, 198504, Russian Federation

Adil M. Yafyasov
 Saint Petersburg State University
1, Ulyanovskaya st., Saint Petersburg, 198504, Russian Federation

Viktor O. Sergeev
Petrophysic LLC
5, Shevchenko st., Nizhnii Domanik vill., pgt Yarega, Ukhta, 169347, Russian Federation

Andrey I. Zippa
Saint Petersburg State University
1, Ulyanovskaya st., Saint Petersburg, 198504, Russian Federation

Nikita A. Sukhanov
Petrophysic LLC
5, Shevchenko st., Nizhnii Domanik vill., pgt Yarega, Ukhta, 169347, Russian Federation

Dmitry K. Makarov
Herzen University
48, riv. Moika emb., Saint Petersburg, 191186, Russian Federation

Aleksandr S. Grishkanich
 Photonics systems LLC
36, build. 1, Babushkina st., Saint Petersburg, 192171, Russian Federation

 

For citation:

Makarova I.R., Laptev N.N., Gorobets S.A., Valiev F.F., Yafyasov A.M., Sergeev V.O., Zippa A.I., Sukhanov N.A., Makarov D.K., Grishkanich A.S. (2021). Application of gamma-ray spectroscopy and IR-spectroscopy methods for the purposes of ore geology in the Timan-Pechora Oil and Gas Province (the case of Ukhta Region). Georesursy = Georesources, 23(1), pp. 17–29. DOI: https://doi.org/10.18599/grs.2021.1.2