Download article

On the melt differentiation in the intermediate chamber (by the example of differentiated intrusives of the western slope of the Southern Urals)

S.G. Kovalev, S.S. Kovalev

Original article



open access

Under a Creative Commons license
The article provides materials on the analysis of the chemical composition of silicates and aluminosilicates that make up the differentiated body of the Misaelga complex, which made it possible by calculation methods to restore the thermobaric parameters of crystallization of the melt in the intermediate chamber.

The presence of high-temperature (1472 ºC) intratelluric olivine crystals characterizing the process of magma generation in the mantle and olivine crystallizing under the conditions of the intermediate chamber (1050–1183 ºC) has been established. The calculated crystallization temperature of pyroxenes indicates that they crystallized together with olivine from the bulk of the rocks, and the established variations in the P–T parameters (T = 950–1045 ºC, P = 4.0–7.4 kbar) for plagioclase and amphibole complete the quantitative characteristics of high-temperature melt crystallization processes.

It is shown that the calculated Р–Т parameters of the crystallization of the melt that formed the intrusive massif make it possible to classify its ultrabasic horizon as picrite complexes of the second type that we identified earlier.

Modeling of the crystallization process carried out using two models – according to the algorithm of H.D. Nathan and K.K. Van Kirk and the software product KOMAGMAT – made it possible to establish that the most probable mechanism for the formation of a differentiated body of the Misaelga complex was directional crystallization with gravitational deposition of olivine at the initial stages of the formation of the massif.
Southern Urals, differentiated body, olivine, clinopyroxene, orthopyroxene, modeling, crystallization temperature, melt differentiation, liquidus phases
  • Aitcheson, S.J., Forrest, A.H. (1994). Quantification of crustal contamination in open magmatic systems. Journal of Petrology, 35, pр. 461–488.
  • Alekseev A.A. (1984). Riphean-Vendian magmatism of the western slope of the Southern Urals. Moscow: Nauka, 136 p. (In Russ.)
  • Alekseev A.A., Alekseeva G.V., Kovalev S.G. (2000). Layered intrusions of the western slope of the Urals. Ufa: Gilem, 188 p. (In Russ.)
  • Appen A.A. (1974). Glass chemistry. Leningrad: Khimiya, 125 p. (In Russ.)
  • Ariskin A.A., Barmina G.S. (2004). COMAGMAT: Development of a magma crystallization model and its petrologic applications. Geochemistry International, 42(Suppl. 1), рp. 1–157.
  • Ariskin A.A., Barmina G.S. (2000). Modelirovanie fazovykh ravnovesiy pri kristallizatsii bazal’tovykh magm. Moscow: Nauka, 363 p. (In Russ.)
  • Ariskin A.A., Barmina G.S., Frenkel M.Yu. (1986). Computer simulation of basalt magma crystallization at a fixed oxygen fugacity. Geochem. Int., 24(5), pp. 92–100. (In Russ.)
  • Ariskin A.A., Frenkel M.Yu., Barmina G.S., Nilsen R. (1993). Comagmat: a Fortran program to model magma differentiation processes. Comput. Geosci., 19(8), pp. 1155–1170.
  • Beattie P. (1993). Olivine-melt and orthopyroxene-melt equilibria. Contributions to Mineralogy and Petrology, 115(1), рp. 103–111.
  • Blundy J.D., Holland T.J.B. (1990). Calcic amphibole equilibria and a new amphibole-plagioclase geothermometer. Contrib Mineral Petrol, 104(2), pp. 208–224.
  • Bohrson W.A., Spera F.J. (2001). Energy-Constrained Open-System Magmatic Processes II: Application of energy-constrained assimilation–fractional crystallization (EC-AFC) model to magmatic systems. J. Petrol., 42(5), рp. 1019–1041.
  • Bohrson W.A., Spera F.J. (2003). Energy-constrained opensystem magmatic processes 4; Geochemical, thermal and mass consequences of Energy-Constrained Recharge, Assimilation and Fractional Crystallization (EC-RAFC). Geochem. Geophys. Geosyst., 4(2).
  • Bowen N.L. (1928). The Evolution of the Igneous Rocks. Princeton University Press, Princeton, 334 p.
  • Bychkov D.A., Koptev-Dvornikov E.V. (2005). Cri-Minal program for modeling the melt-solid phase equilibrium for a given gross composition of the system. Proc. Conf.: Ultramafic-mafic complexes of folded areas of the Precambrian. Ulan-Ude: BurNTs SB RAS, pp. 122–123. (In Russ.)
  • Campbell F.E., Roeder P. (1968). The stability of olivine and pyroxene in the Ni-Mg-Si-O system. Am. Mineralog, 53, pp. 257–268.
  • De Hoog Jan C.M., Gall Louise, David H.C. (2010). Trace-element geochemistry of mantle olivine and application to mantle petrogenesis and geothermobarometry. Chemical Geology, 270(1–4), pp. 196–215.
  • DePaolo D.J. (1981). Trace element and isotopic effects of combined wallrock assimilation and fractional crystallization. Earth and Planetary Science Letters, 53(2), рp. 189–202.
  • Drits V.A., Kossovskaya A.G. (1991). Clay minerals: micas, chlorites. Moscow: Nauka, 176 p. (In Russ.)
  • Erofeeva, K.G., Stepanova, A.V., Samsonov, A.V. et al. (2019) 2.4 Ga Mafic Dikes and Sills of Northern Fennoscandia: Petrology and Crustal Evolution. Petrology, 27, pp. 17–42.
  • Frenkel M.Ya., Yaroshevskiy A.A., Ariskin A.A., et al. (1988). Dynamics of intrachamber differentiation of basic magmas. Moscow: Nauka, 216 p. (In Russ.)
  • Fuchs L.H., Olsen E., Jensen K.J. (1973). Mineralogy, Mineral-Chemistry, and Composition of the Murchison (C2) Meteorite. Smithson. Contrib. Earth Sci., 10, pp. 1–39.
  • Gillis K.M., Snow J.E., Klaus A., Abe N., Adriao A.B., Akizawa N., Ceuleneer G., Cheadle M.J., Faak K., Falloon T.J., Friedman S.A., Godard M., Guerin G., Harigane Y., Horst A.J., Hoshide T., Ildefonse B., Jean M.M., John B.E., Koepke J., Machi S., Maeda J., Marks N.E., McCaig A.M., Meyer R., Morris A., Nozaka T., Python M., Saha A., Wintsch R.P. (2014) Primitive layered gabbros from fastspreading lower oceanic crust. Nature, 505, рp. 204–207.
  • Giret A., Bonin B., Leger J.M. (1980). Amphibole compositional trends in oversaturated alkaline plutonic ring-complexes. The Canadian Mineralogist, 18, pp. 481–495.
  • Humphreys M.C.S (2011) Silicate liquid immiscibility within the crystal mush: evidence from Ti in plagioclase from the Skaergaard intrusion. J Petrol., 52, рp. 147–174.
  • Kovalev S.G. (1996). Differentiated diabase-picrite complexes of the western slope of the Southern Urals. Ufa: IG UNTs RAS, 99 p. (In Russ.)
  • Kovalev S.G. (2011). New data on the geochemistry of diabase-picrite magmatism on the western slope of the Southern Urals and the conditions for its formation. Litosfera = Lithosphere (Russia), 2, pp. 68–83. (In Russ.)
  • Kovalev S.G., Kovalev S.S., Vysotskiy S.I. (2018). Noble metal geochemical specialization of the Mesoproterozoic magmatic complexes of the Bashkirian meganticlinorium and the eastern margin of the East European platform. Litosfera = Lithosphere (Russia), 18(2), pp. 295–313. (In Russ.)
  • Kovalev S.G., Puchkov V.N., Vysotskiy S.I., Kovalev S.S. (2017). Conditions for the formation of igneous rocks during the plume process (on the example of the western slope of the Southern Urals). DAN, 475(2), pp. 171–175. (In Russ.)
  • Kranidiotis P., MacLean W.H. (1987). Systematic of Chlorite Alteration at the Phelps Dodge Massive Sulfide Deposit, Matagami, Quebec. Economic Geology, 82(7), pp. 1808–1911.
  • Kretz R. (1982). Transfer and exchange equilibria in a portion of the pyroxene quadrilateral as deduced from natural and experimental data. Geochimica et Cosmochimica Acta, 46(3), pp. 411–422.
  • Layered Intrusions. (2015). Eds: Charlier B., Namur O., Latypov R., Tegner C. Springer, 748 p.
  • Leak B.E. (1978). Nomenclature of amphiboles. Miner. Mag., 42(324), pp. 533–563.
  • Lennykh V.I., Petrov V.I. (1978). Picrites of the Taratash complex. Trudy Il’men. gos. zapoved., vol. 17, pp. 45–52. (In Russ.)
  • Lepage L.D. (2003). ILMAT: an excel worksheet for ilmenite-magnetite geothermometry and geobarometry. Comput. Geosci., 29(5), pp. 673–678.
  • Leuthold J, Blundy J.D, Holness M.B, Sides R. (2014) Successive episodes of reactive liquid flow through a layered intrusion (Unit 9, Rum Eastern Layered Intrusion, Scotland). Contrib. Mineral. Petrol., 168, рp. 1–27.
  • Lindsley D.H., Spencer K.J. (1982). Fe-Ti oxide geothermometry: Reducing analyses of coexisting Ti-magnetite (Mt) and ilmenite (Ilm). American Geophysical Union, 63(18), p. 471.
  • Loucks Robert R. (1996). A precise olivine-augite Mg-Fe-exchange geothermometer. Contrib Mineral. Petrol., 125(2–3), рp. 140–150.
  • Miyamoto M., Furuta T., Fujii NMcKay., D.S., Lofgren G.E., Duke M.B. (1993). The Mn-Fe negative correlation in olivines in ALHA 77257 ureilite. Journal of Geophysical Research, 98(E3), pp. 5301–5307.
  • Myuller R., Saksena S. (1980). Chemical petrology. Moscow: Mir, 516 p. (In Russ.)
  • Namur O, Charlier B, Toplis M.J, Higgins M.D, Liégeois J-P, Vander Auwera J. (2010) Crystallization sequence and magma chamber processes in the ferrobasaltic Sept Iles layered intrusion, Canada. J. Petrol., 51, pp. 1203–1236.
  • Nathan H.D., Vankirk C.K. (1978). A model of magmatic crystallization. Petrol., 19(1), pp. 66–94.
  • Nielsen R.L. (1985). EQUIL: a program for the modeling of low-pressure differentiation processes in natural mafic magma bodies. Computers & Geosciences, 11, рp. 531–546.
  • Nielsen R.L. (1988). TRACE FOR: A program for the calculation of combined major and trace-element liquid lines of descent for natural magmatic systems. Computers & Geosciences, 14, рp. 15–35.
  • Nosova, A.A., Sazonova, L.V., Kargin, A.V. et al. (2012) Mesoproterozoic within-plate igneous province of the western urals: Main petrogenetic rock types and their origin. Petrology, 20, pp. 356–390.
  • Perchuk L.L., Saxena S.K and Bhattacharji S. (1977). Thermodynamic control of metamorphic processes in Energetics of Geological Processes. New York: Springer.
  • Polzunenkov G.O. (2018). Evaluation of P-T and fO2 conditions of crystallization of monzonitoids of the Velitkenai granite-migmatite massif (Arctic Chukotka) based on mineral thermobaro- and oxybarometry data. Tikhookeanskaya geologiya, 37(5), pp. 97–111. (In Russ.)
  • Powell R. (1984). Inversion of the assimilation and fractional crystallization (AFC) equations; characterization of contaminants from isotope and trace element relationships in volcanic suites. Journal of Geological Society of London, 141(3), рp. 447–452.
  • Roedder P.L., Emslie R.F. (1970). Olivine-liquid equilibrium. Contributions to Mineralogy and Petrology, 29(4), рp. 275–289.
  • Sazonova L.V., Nosova A.A., Larionova Yu.O., Kargin A.V., Kovalev S.G. (2011). Mesoproterozoic picrites of the eastern margin of the East European Platform and the Bashkirian meganticlinorium: petrogenesis and compositional features of olivine and clinopyroxene. Litosfera = Lithosphere (Russia), 3, pp. 64–83. (In Russ.)
  • Sharkov E.V. (1980). Petrology of layered intrusions. Leningrad: Nauka, 120 p. (In Russ.)
  • Spera F.J., Bohrson W.A. (2001). Energy-constrained opensystem magmatic processes, 1, General model and energyconstrained assimilation and fractional crystallization (ECAFC) formulation. J. Petrol., 42(5), рp. 999–1018.
  • Spera F.J., Bohrson W.A. (2002). Energy-constrained opensystem magmatic processes 3. Energy-constrained recharge, assimilation, and fractional crystallization (EC-RAFC). Geochemistry Geophysics Geosystems, 3(12), рp. 1–20.
  • Spera F.J., Bohrson W.A. (2004). Open-system magma chamber evolution: an energy-constrained geochemical model incorporating the effects of concurrent eruption, recharge, variable assimilation and fractional crystallization (EC-E’RA FC). Journal of Petrology, 45(12), рp. 2459–2480.
  • Toramaru A, Matsumoto M. (2012) Numerical experiment of cyclic layering in a solidified binary eutectic melt. J. Geophys. Res., 117, B02209.
  • Wager L.P., Brown G. (1968). Layered igneous rocks. Edinburgh; London: Oliver & Boyd, 588 p.
  • Wells P.R.A. (1977). Pyroxene thermometry in simple and complex systems. Contributions to Mineralogy and Petrology, 62(2), pp. 129–139.
  • Wood B.J., Banno S. (1973). Garnet-orthopyroxene and orthopyroxene-clinopyroxene relationships in simple and complex systems. Contributions to Mineralogy and Petrology, 42(2), pp. 109–124.
  • Yaroshevskiy A.A. (1964). The principle of zone melting and its application in solving some geochemical issues. Proc. Conf.: Chemistry of the Earth’s Crust, vol. 2. Moscow: Nauka, pp. 55–62. (In Russ.)
Sergey G. Kovalev
Institute of Geology – Subdivision of the Ufa Federal Research Centre of the Russian Academy of Sciences
16/2 Karl Marx st., Ufa, 450077, Russian Federation
Sergey S. Kovalev
Institute of Geology – Subdivision of the Ufa Federal Research Centre of the Russian Academy of Sciences
16/2 Karl Marx st., Ufa, 450077, Russian Federation

For citation:

Kovalev S.G., Kovalev S.S. (2021). On the melt differentiation in the intermediate chamber (by the example of differentiated intrusives of the western slope of the Southern Urals). Georesursy = Georesources, 23(4), pp. 80–95. DOI: