The Larino granite-gneiss dome is located on the border of the Aramil-Sukhtelya and Magnitogorsk megazones and is a two-headed anticlinal structure, the nuclear parts of which are composed of granitoids of the Pervomai and Larino massifs, and their framing – apovolcanic amphibolites, garnet-mica-tins, garnet-amphislans siliceous-carbonaceous schists of the Bulatovo Series (S1–D1bl). A series of concentric high-gradient zones of metamorphism are observed from granitoids to shales. Mineral parageneses of the amphibolite facies at a distance of several kilometers are replaced by associations of epidote-amphibolite and greenschist facies.
It has been proven that granitoids belong to the granite-migmatite formation, are close to trondhjemites of the inner parts of the continents (granites, leucogranites) and continental margins (gneisized, migmatized granitoids) and were formed in intraplate and collisional geodynamic settings.
Crystallization of granites took place at temperatures of 780–840°С and a pressure of 2.1–3.7 kbar, plagiogranites – 880–940°С and 2.9–3.3 kbar, which corresponds to the abyssal depth zone (7–11 km). For granitoids formed in the process of metasomatic granitization (gneissized and migmatized rocks), formation temperatures are noticeably lower – 650–680°С, and the pressure is higher – 6.6–7.0 kbar (almandine amphibolite facies).
South Ural, Larino dome, geodynamics, petrogeochemistry, granite-gneisses, migmatites, granites, melt inclusions, garnet-amphibole thermobarometer
- Art J.G. (1983). Some trace elements in trondhjemites: their importance for elucidating the genesis of magma and paleotectonic conditions. Trondjemites, dacites and related rocks. Ed. F. Barker. Moscow: Mir, pp. 99–105. (In Russ.)
- Bluman B.A., Dyakonov Y.S., Krasavina T.N., Pavlov M.G. (1974). Using thermal and X-ray graphite characteristics to determine the level and type of metamorphism. Zapiski RMO = Proceedings of the Russian Mineralogical Society, 103(1), pp. 95–103. (In Russ.)
- Borneman-Starynkevich I.D. (1964). Guide for the calculation of the formulas of minerals. Moscow: Nauka, 224 p. (In Russ.)
- Buseck P.R., Beyssac O. (2014). From organic matter to graphite: graphitization. Elements, 10, pp. 421–426. https://doi.org/10.2113/gselements.10.6.421
- Coleman R.G., Donato M.M. (1983). Once again about oceanic plagiogranites. Trondhjemites, dacites and related rocks. Ed. F. Barker, Moscow: Mir, pp. 118–130. (In Russ.)
- Eskola P.E. (1949). The problem of mantled gneiss domes. Quarterly Journal of the Geological Society, 104(4), рр. 461–476. https://doi.org/10.1144/GSL.JGS.1948.104.01-04.21
- Fershtater G.B. (2013). Paleozoic intrusive magmatism of the Middle and Southern Urals. Yekaterinburg: RIO UB RAS, 368 p. (In Russ.)
- Keilman G.A. (1974). Migmatite complexes of mobile belts. Moscow: Nedra, 200 p. (In Russ.)
- Keilman G.A. (1988). Granitization and tectonics. Sverdlovsk: SGI publ., 36 p. (In Russ.)
- Koval P.V., Prokofiev V.Yu. (1998). P–T conditions of crystallization of granitoids in the Mongolia–Okhotsk Zone: evidence from studies of melt and fluid inclusions in minerals. Petrology, 6(5), pp. 451–465. (In Russ.)
- Kovalev S.G., Snachev V.I., Romanovskaya M.A. (1995). New geological and petrogenetic aspects of the formation of the Kusinsko-Kopan complex. Moscow University Geology Bulletin, 4, pp. 81–85. (In Russ.)
- Marakushev A.A. (1965). Problems of mineral facies of metamorphic rocks. Moscow: Nauka, 327 p. (In Russ.)
- Miyashiro A. (1976). Metamorphism and metamorphic belts. Moscow: Mir, 535 p. (In Russ.)
- Naumov V.B. (1969). Thermometric study of melt inclusions in quartz phenocrysts of quartz porphyry. Geokhimiya, 4, pp. 494–498. (In Russ.)
- Naumov V.B. (1979). Determination of concentration and pressure of volatiles in magmas from inclusions in minerals. Geokhimiya, 13, pp. 33–40. (In Russ.)
- Pearce J.A., Harris N.B.W., Tindle A.G. (1984). Trace element discrimination diagrams for the tectonic interpretation of granitic rock. Journal of Petrology, 25(4), pp. 956–983. https://doi.org/10.1093/petrology/25.4.956
- Perchuk L.L., Ryabchikov I.D. (1976). Phase correspondence in mineral systems. Moscow: Nedra, 287 p. (In Russ.)
- Permyakov B.N. (2000). Chashkov-Elanchik migmatite-gneiss-granite massif (South Urals). Miass: IGZ UB RAS, 187 p. (In Russ.)
- Puchkov V.N., Ivanov K.S. (1989). On the stratigraphy of black shale strata in the east of the Urals. Ezhegodnik-1988. Sverdlovsk: IGG UrO RAN, pp. 4–7. (In Russ.)
- Puzhakov B.A., Saveliev V.P., Kuznetsov N.S., Shokh V.D., Shchulkin E.P., Shchulkina N.E., Zhdanov A.V., Dolgova O.Ya., Tarelkina E A., Orlov M.V. (2013). State geological map of the Russian Federation. Scale 1:1 000 000 (3nd ed.). Ural series, Sheet N-41 (Chelyabinsk), Explanatory note. St. Petersburg: VSEGEI, 415 p. (In Russ.)
- Puzhakov B.A., Shokh V.D., Schulkina N.E., Shchulkin E.P., Dolgova O.Ya., Orlov M.V., Popova T.A., Tarelkina E.A., Ivanov A.V. (2018). State geological map of the Russian Federation. Scale 1:200 000 (2nd ed.) South Ural series, Sheet N-41-XIII (Plast). Explanatory note. Moscow: VSEGEI, 205 p. (In Russ.)
- Salop L.I. (1971). Two types of Precambrian structures: gneiss folded ovals and gneiss domes. Bulletin MOIP. Geological department, 4, pp. 5–30. (In Russ.)
- Shevchuk V.V. (1987). Structural position of granite-gneiss domes of the Borshchevoch ridge (Eastern Transbaikal). Proceedings of HEE. Geology and exploration, 5, pp. 33–36. (In Russ.)
- Sinitsa S.M. (1975). Gneiss domes of the Nerchin ridge in Eastern Transbaikal. Novosibirsk: Nauka, 138 p. (In Russ.)
- Snachev A.V., Snachev V.I., Romanovskaya M.A. (2015). The geology, petrogeochemistry, and ore content of carbonaceous deposits from the Larinsky dome (South Urals). Moscow University Geology Bulletin, 70(2), pp. 131–140. https://doi.org/10.3103/S014587521502009X
- Snachev A.V., Snachev V.I., Rykus M.V. (2010). Prospects for ore-bearing carbonaceous deposits in the western framing of the Suunduk granite massif. Neftegazovoe delo, 8(2), pp. 11–20. (In Russ.)
- Snachev V.I. (2014). Formation conditions and zoning of rocks of the metamorphic complex of the Kochkar anticlinorium (East Ural uplift). Geologicheskii sbornik, 11, pp. 118–122. (In Russ.)
- Snachev V.I., Shchulkin E.P., Murkin V.P., Kuznetsov N.S. (1990). Magmatism of the East Ural belt of the South Urals. Ufa: Institute of Geology, BNTs, UrO of the USSR AS, 179 p. (In Russ.)
- Solodov N.A., Balashov A.S., Kremenetsky A.A. (1980). Geochemistry of lithium, rubidium and cesium. Moscow: Nedra, 233 p. (In Russ.)
- Sorvachev K.K. (1978). Plastic deformations in granite-gneiss structures. Moscow: Nauka, 122 p. (In Russ.)
- Thermo- and barometry of metamorphic rocks (1977). Leningrad: Nauka, 207 p. (In Russ.)
- Wakita H., Rey P., Schmitt R.A. (1971). Abundences of the 14 rare-earth elements and 12 other trace elements in Apollo 12 samples: fife igneous and one breccia rocks and four soils. Proceedings of the Lunar Science Conference. Oxford: Pergamon Press, 2, pp. 1319–1329.
- Zhdanov A.V., Obodov V.A., Makariev L.B., Matyushkov A.D., Molchanova E.V., Stromov V.A. (2018). State geological map of the Russian Federation. Scale 1: 200,000, 2nd ed. Yuzhnouralskaya series. Sheet N-40-XVIII (Uchaly), Explanatory note. Moscow: VSEGEI, 386 p. (In Russ.)
-
Vladimir I. Snachev (08.11.1955–08.03.2022) – DSc (Geology and Mineralogy), Professor, Chief Researcher, Institute of Geology of the Ufa Federal Research Centre of the Russian Academy of Sciences
16/2, Karl Marx st., Ufa, 450077, Russian Federation
Aleksandr V. Snachev – PhD (Geology and Mineralogy), Leading Researcher, Head of the Ore Field Laboratory, Institute of Geology of the Ufa Federal Research Centre of the Russian Academy of Sciences
16/2, Karl Marx st., Ufa, 450077, Russian Federation
e-mail: Savant@rambler.ru
Vsevolod Yu. Prokofiev – DSc (Geology and Mineralogy), Professor, Leading Researcher, Institute of the Geology of Ore Deposits, Petrography, Mineralogy, and Geochemistry of the Russian Academy of Sciences
35, Staromonetny lane, Moscow, 119017, Russian Federation
Snachev V.I., Snachev A.V., Prokofiev V.Yu. (2022). Physicochemical conditions of the formation of the Larino granite-gneiss dome (South Ural). Georesursy = Georesources, 24(1), pp. 74–83. DOI: https://doi.org/10.18599/grs.2022.1.7