Pages
Download article

Thermal evolution of the southern part of the Barents Sea (the Fedynsky Arch)

M.D. Khutorskoi, S. Yu. Sokolov

Original article

DOI https://doi.org/10.18599/grs.2022.3.9

99-113
rus.

open access

Under a Creative Commons license
The distribution of thermal conductivity, radiogenic heat generation and heat flow in the Barents Sea southern part, including the Fedynsky Arch, is analyzed. Models of deep temperatures controlling the catagenesis of organic matter thermal conditions are calculated. A 3D temperature model was built up to a 30 km depth, which allowed us to demonstrate cross-sectional temperature maps at various depths in the Earth’s crust. A comparison of the Barents Sea thermal field and seismotomographic model was carried out, which showed that the seismotomographic anomalies are caused by thermal inhomogeneities.
 
Geothermics, thermal and seismic tomography, sedimentary basin, oil and gas potential, modeling
 
  • Ampilov Yu.P. (2017). New challenges for the Russian oil and gas industry in the face of sanctions and low oil prices. Mineral‘nye resursy Rossii. Ekonomika i upravlenie, 2, pp. 38-50. (In Russ.)
  • Arctic on the threshold of the third millennium (resource potential and environmental problems) (2000). Ed. I.S. Gramberg, N.P. Laverov, D.A. Dodin. St.Petersburg: Nauka, 247 p. (In Russ.)
  • Arctic and Far Eastern seas. Geology and minerals of Russia (2004). Ed I.S. Gramberg, V.L. Ivanov, Yu.E. Pogrebitskiy. St.Petersburg: VSEGEI, t. 5,  kn. 1, 468 p. (In Russ.)
  • Akhmedzyanov V.R., Ermakov A.V., Khutorskoy M.D. (2011). Heat flow and temperatures in the Earth‘s crust west of Shpitsbergen (cruises 26 and 27 of the R/V Akademik Nikolai Strakhov). Monitoring: nauka i tekhnologii, 1(6), pp. 6-18. (In Russ.)
  • Birch F.,Roy R.F.,Decker E.R. (1968). Heat flow and thermal history in New England and New York, chapt. 33. Studies in Appalachian Geology. N.Y., pp. 437-451.
  • Bücker C.J., Jarrard R.D. and Wonik T. (2001). Downhole Temperature, Radiogenic Heat Production, and Heat Flow from the CRP-3 Drillhole, Victoria Land Basin, Antarctica. Terra Antartica, 8(3), pp. 151-159.
  • Bungum H., Ritzmann O., Maercklin N., Faleide J.-I., Mooney W.D., Detweiler S.T. (2005). Three-Dimensional Model for the Crust and Upper Mantle in the Barents Sea Region. Eos, 86(16). https://doi.org/10.1029/2005EO160003
  • Chapman D., Furlong K. (1977). Continental heat flow–age relationships. Trans. Amer. Geophys. Un., 58, pp. 1240-1251. 
  • Dziewonski A.M. (1984). Mapping the lower mantle: Determination of lateral heterogeneity in P-velosity up to degree and order 6. J.Geophys.Res., 89, pp. 5929-5952. https://doi.org/10.1029/JB089iB07p05929
  • Dziewonski A.M., Anderson D.L. (1984). Seismic tomography of the Earth`s interior. Amer. Sci. vol., 72(5), pp. 483-494.
  • Gramberg I.S., Evdokimova N.K., Suprunenko O.I. (2001). Catagenetic zoning of the sedimentary cover of the Barents Sea shelf in connection with oil and gas potential. Geologiya i geofizika = Russian Geology and Geophysics, 42(11-12), pp. 1808-1820. (In Russ.)
  • Gramberg I.S., Suprunenko O.I., Lazurkin D.V. (2000). Oil and gas potential of the Arctic Ocean. Coll. papers: Geological structure and geomorphology of the Arctic Ocean in connection with the problem of the outer boundary of the continental shelf of the Russian Federation in the Arctic basin. St. Petersburg: VNIIOkeangeologiya, pp. 5-19. (In Russ.)
  • Grigoriev G.A., Arutyunyan S.S., Nazarov V.I., Krasnov O.S., Medvedeva L.V. (2015). Geological and economic assessment of forecast oil and gas resources of the Russian continental shelf. CIS Offshore 2015. St. Petersburg: Khimizdat,  pp. 9-15. (In Russ.)
  • Hosney H.M. (2000). Geophysical parameters and crustal temperatures characterizing tectonic and heat flow provinces of Egypt. ICEHM, Cairo University, pp. 152-166.
  • Hunt J.M. (1982). Petroleum geochemistry and geology. Moscow: Mir, 556 p. (In Russ.)
  • Hurtig E. (Editor-in Chief) (1991/1992). Catalogue Heat Flow Density Data. Geothermal Atlas of Europe (1991-1992). Potsdam: Geographtsch- Kartographische Anstalt Gotha, pp. 107-156.
  • Jaupart C. and Mareschal J.-C. (2004). Constraints on Crustal Heat Production from Heat Flow Data. Treatise on Geochemistry, Vol. 3. The Crust, edited by R.L. Rudnick, Elsevier Science Publishers, Amsterdam, pp. 65-84. https://doi.org/10.1016/B0-08-043751-6/03017-6
  • Kholodilov V.A. (2006). Geology, oil and gas potential and scientific foundations of the strategy for the development of oil and gas resources in the Barents and Kara Seas. Dr. geol.-min. sci. diss. Moscow. (In Russ.)
  • Khutorskoi M.D. (1982). Heat flow in areas of structural-geological inhomogeneities. Moscow: Nauka, 79 p. (In Russ.)
  • Khutorskoi M.D., Podgornykh L.V., Akhmedzyanov V.R. (2000). Geothermal field and thermal evolution of the lithosphere of the Barents Sea region. Vestn. RAEN, 5, pp. 55-77. (In Russ.)
  • Khutorskoi M.D., Podgornykh L.V., Gramberg I.S., Leonov Yu.G. (2003). Thermotomography of the Western Arctic Basin. Geotektonika, 3, pp. 79-96. (In Russ.)
  • Khutorskoi M.D., Viskunova K.G., Podgornykh L.V., Suprunenko O.I., Akhmedzyanov V.R. (2008). Geotemperature model of the Earth‘s crust in the Barents Sea: studies along geotraverses. Geotektonika, 2, pp. 36-54. (In Russ.)
  • Khutorskoi M.D., Leonov Yu.G., Ermakov A.V., Akhmedzyanov V.R. (2009). Anomalous heat flow and the nature of the troughs in the northern part of the Svalbard plate. Dokl. RAN, 424(2), pp. 318-323. (In Russ.)
  • Khutorskoi M.D., Akhmedzyanov V.R., Ermakov A.V. et al. (2013). Geothermy of the Arctic Seas. Moscow: GEOS, 232 p. (GIN RAN coll. papers; vol. 605) (In Russ.)
  • Khutorskoi M.D., Polyak B.G. (2014). Geothermal models of geodynamic settings of various types. Geotectonics, 48, pp. 68–85. 
  • Kola superdeep. Study of the deep structure of the continental crust by drilling the Kola superdeep well (1984). Ed. E.A. Kozlovsky. Moscow: Nedra, 490 p. (In Russ.)
  • Levashkevich V.G. (1992). Taking into account the temperature regime of bottom waters when measuring geothermal parameters in the Barents Sea. Okeanologiya, 32(1), pp. 151-158. (In Russ.)
  • Levashkevich V.G. (2005). Patterns of geothermal field distribution in the margins of the East European Platform (Barents Sea and Belarusian-Baltic regions). Abstract Dr. sci. diss. Moscow: MSU, 42 p. (In Russ.)
  • Leonov Yu.G., Khutorskoy M.D., Ermakov A.V., Akhmedzyanov V.R. (2010). Anomalous heat flow as a sign of crustal destruction on the northern margin of the Svalbard plate. Geology and Geoecology of the Continental Margins of Eurasia, vol. 2. Moscow: GEOS, pp. 41-54. (In Russ.)
  • Lysenin G.P., Karpyuk E.F. (2004). Superhydrostatic formation pressures in the Timan-Pechora province. Proc. XIV geol. Congress of the Komi Republic. V. III. Syktyvkar: In-t geol. Komi NTs UrO RAN, pp. 151-153. (In Russ.)
  • Matveev Yu.I., Vinokurov I.Yu. (2008). Geological results of regional seismic profiling of the Arctic seas. Theory and practice of petrogeological forecasting. St. Petersburg: VNIGRI, pp. 262-277. (In Russ.)
  • Methodological and experimental foundations of geothermy (1983). Moscow: Nauka, 230 p. (In Russ.)
  • Morgan P., Sass J.H. (1984). Review. Thermal regime of the continental lithosphere. Journ. geodynamics, 1, pp. 143-166. https://doi.org/10.1300/J123v09n01_12
  • Nikitin D. S., Khutorskoy M.D., Ivanov D.A. (2020). Vertical catagenetic zonality of the sedimentary cover of the northeastern part of the Barents Sea shelf. Litologiya i poleznye iskopaemye = Lithology and mineral resources, 5, pp. 438-460. (In Russ.)
  • Nikolaev A.V. (1997). Problems of geotomography. Moscow: Nauka, pp. 4-38. (In Russ.)
  • Polyak B.G., Smirnov Ya.B. (1968). Relationship between deep heat flow and tectonic structure of continents. Geotektonika, 4, pp. 3-19. (In Russ.)
  • Popov Yu.A., Pevzner S.L., Pimenov V.P., Pevzner L.A. (1999). Geothermal characteristics of the section of the Kola superdeep well. Dokl. RAN, 369(6), pp. 1-5. (In Russ.)
  • Poselov V.A., Pavlenkin A.D., Butsenko V.V. (1996). The structure of the lithosphere according to geotraverses of the DSS in the Arctic. Geological and geophysical characteristics of the lithosphere of the Arctic region, vol. 1, ch. 2. St. Petersburg: VNIIOkeanologiya, pp. 145-155. (In Russ.)
  • Pushcharovsky Yu.M. (1993). Nonlinear geodynamics: Credo of the author. Geotektonika, 1, pp. 3-6. (In Russ.)
  • Sclater J.G., Francheteau J. (1970). The implications of terrestrial heat flow observation on current tectonic and geochemical models of the crust and upper mantle of the Earth Geophys. J.Roy.Astron.Soc., 20, pp. 509-542. https://doi.org/10.1111/j.1365-246X.1970.tb06089.x
  • Seismic tomography: Theory and practice (1993). Ed. By H.M. Iyer and K.Hirahara, pp. 519-584.
  • Shipilov E.V., Senin B.V. (1988). Deep structure of the bottom of the Barents Sea. Geotektonika, 6, pp. 96-100. (In Russ.)
  • Shkarubo S.I., Shipilov E.V. (2007). Tectonics of the Western Arctic platform. Razvedka i okhrana nedr, 9, pp. 32-47. (In Russ.)
  • Spichak V.V. (1999). Magnetotelluric fields in three-dimensional models of geoelectrics. Moscow: Nauchnyy mir, 204 p. (In Russ.)
  • Suprunenko O.I., Tugarova M.A. (2003). Geochemistry of naphthides. St. Petersburg: SPbSU, 234 p. (In Russ.)
  • Tarakanov Yu.A. (1997). Gravitational tomography. Problems of geotomography. Moscow: Nauka, pp. 236-265. (In Russ.)
  • Tectonic map of the Barents Sea and the northern part of European Russia (1996). Scale 1:2500000. Ed. Bogdanov N.A., Khain V.E. Moscow: Kartografiya. (In Russ.)
  • Tsybulya L.A., Levashkevich V.G. (1992). Thermal field of the Barents Sea region. Apatity, 114 p. (In Russ.)
  • Vassoevich N.B. (1990). Lithology and oil and gas potential. Moscow: Nauka, 423 p. (In Russ.)
  • Verba M.L. (2008). Comparative Geodynamics of the Eurasian Basin. St.Petersburg: Nauka, 191 p. (In Russ.)
  • Verzhbitskiy E.V. (2002). Geothermal regime, bottom tectonics and hydrocarbon generation temperatures in the eastern part of the Barents Sea. Geotektonika, 1, pp. 76-85. (In Russ.)
  • Vila M., Fernandez M., Jimenez-Munt I. (2010). Radiogenic heat production variability of some common lithological groups and its significance to lithospheric thermal modeling. Tectonophysics, 490(3-4), pp. 152-164. https://doi.org/10.1016/j.tecto.2010.05.003
  •  
Mikhail D. Khutorskoi – Dr. Sci. (Geology and Mineralogy), Professor, Head of the Heat and Mass Transfer Laboratory 
Geological Institute of the Russian Academy of Sciences
7, Pyzhevsky lane, Moscow, 119017, Russian Federation
 
Sergey Yu. Sokolov – Cand. Sci. (Physics and Mathematics), Head of the Laboratory of Ocean Floor Geomorphology and Tectonics, Geological Institute of the Russian Academy of Sciences
7, Pyzhevsky lane, Moscow, 119017, Russian Federation
 

For citation:

Khutorskoi M.D., Sokolov S.Yu. (2022). Thermal evolution of the southern part of the Barents Sea (the Fedynsky Arch). Georesursy = Georesources, 24(3), pp. 99–113. DOI: https://doi.org/10.18599/grs.2022.3.9