Download article

Chromitite deposits of Ufaley ultramafic massif (South Urals)

D.E. Saveliev

Original article



open access

Under a Creative Commons license
Data on the morphology, composition, textural and structural features of chromite deposits of the Ufaley ultramafic massif are presented. The mineralogical and compositional features of the host ultramafic rocks allow us to interpret them as depleted restite from partial melting of mantle peridotites. Relatively wide variations in the composition of ore-forming chromian spinel grains (#Cr 0.6–0.8) and noticeable metamorphism of disseminated ores with replacement of chromite by Cr-magnetite are noted. It is assumed that chromitite bodies were initially formed under the conditions of the upper mantle by a rheomorphic mechanism, and then their structural and geochemical transformation took place in the collisional setting of the upper part of the crust. Flattened bodies of disseminated chromitites have been preserved near competent gabbroid blocks, while other deposits have been transformed into lenses and podiform bodies of densely disseminated and massive ores of smaller size. The “cold tectonics” of the crustal stage led to the disintegration of deposits and the simultaneous local enrichment of deformed chromitite bodies.
Сhromitite, ultramafic rocks, ophiolite, Ufaley massif, South Urals 
  • Arai S., Miura M. (2016). Formation and modification of chromitites in the mantle. Lithos, 264, pp. 277-295.
  • Ballhaus C. (1998). Origin of the podiform chromite deposits by magma mingling. Earth and Planetary Science Letters, 156, pp. 185-193.
  • Bazhin E.A., Saveliev D.E., Snachev V.I. (2010). Gabbro-gyperbasite complexes of junction area of Magnitogorsk and Tagil megazones: structure and formation conditions. Ufa: DizaynPoligrafServis, 244 p. (In Russ.)
  • Bok I.I. (1927). Deposits of chromium iron ore in Verkhne-Ufaleyskaya dacha. 77 p. (In Russ.)
  • Borisova A.Y., Ceuleneer G., Kamenetsky V.S., Arai S., Béjina F., Abily B., Bindeman I.N., Polvé M., De Parseval P., Aigouy T., Pokrovski G.S. (2012). A new view on the petrogenesis of the Oman ophiolite chromitites from microanalyses of chromite-hosted inclusions. Journal of Petrology, 53, pp. 2411-2440.
  • Cassard D., Nicolas A., Rabinowitch M., Moutte J., Leblanc M., Prinzhoffer A. (1981). Structural Classification of Chromite Pods in Southern New Caledonia. Economic Geology, 76, pp. 805-831.
  • Chaschukhin I.S., Votyakov S.L., Schapova Yu.V. (2007). Crystal chemistry of Cr-spinel and oxythermobarometry of ultramafic rocks of folded regions. Ekaterinburg: IGG UB RAS, 310 p. (In Russ.)
  • Dickey J.S. (1975). A hypothesis of origin for podiform chromite deposits. Geochimica et Cosmochimica Acta, 39, pp. 1061-1075.
  • Gonzalez-Jimenez J.M., Griffin W.L., Proenza A., Gervilla F., O’Reilly S.Y., Akbulut M., Pearson N.J., Arai S. (2014). Chromitites in ophiolites: how, where, when, why? Part II. The crystallisation of chromitites. Lithos, 189, pp. 148-158.
  • Hock M., Friedrich G. (1985) .Structural features of ophiolitic chromitites in the Zambales Range, Luzon, Philippines. Mineralium Deposita, 20, pp. 290-301.
  • Johan Z., Martin R.F., Ettler V. (2017). Fluids are bound to be involved in the formation of ophiolitic chromite deposits. European Journal of Mineralogy, 29, pp. 543-555.
  • Krasulin V.S. (1939). Report on the geological survey of the Ufaley chromite-bearing region (Geological map of the Urals, scale 1: 50,000. Tablets N-41-133-A, B, C, D; N-41-1-B; N-41-2-A). 280 p., No. 07927. (In Russ.)
  • Kravchenko G.G. (1969). The role of tectonics in the crystallization of chromite ores of the Kempirsay pluton. Moscow: Nauka, 232 p. (In Russ.)
  • Lago B.L., Rabinowicz M., Nicolas A. (1982). Podiform chromite ore bodies: a genetic model. Journal of Petrology, 23, pp. 103-125.
  • Leblanc M., Ceuleneer G. (1992). Chromite crystallization in a multicellular magma flow: evidence from a chromitite dike in the Oman ophiolite. Lithos, 27, pp. 231-257.
  • Matveev S., Ballhaus C. (2002). Role of water in the origin of podiform chromitite deposits. Earth and Planetary Science Letters, 203, pp. 235-243. DOI: 10.1016/S0012-821X(02)00860-9
  • Ono A. (1983). Fe-Mg partioning between spinel and olivine. Journal of Japanese Association of Mineralogy, Petrology and Economic Geology, 78, pp. 115-122.
  • Pavlov N.V., Grigoryeva-Chuprynina I.I. (1973). Regularities of the formation of chromite deposits. Moscow: Nauka, 200 p. (In Russ.)
  • Pavlov N.V., Kravchenko G.G., Chuprynina I.I. (1968). Chromites of Kempirsay pluton. Moscow: Nauka, 178 p. (In Russ.)
  • Register of chromite occurences in the alpine-type ultrabasites (2000). Ed. Perevozchikov B.V. Perm, 474 p. (In Russ.)
  • Roeder R.L., Campbell I.H., Jamieson H.E. (1979). A re-evaluation of the olivine-spinel geothermometer. Contribution to Mineralogy and Petrology, 68, pp. 325-334.
  • Rost F. (1959). Probleme ultrabasischer Gesteine und ihrer Lagerstatten. Freiberger Forschungshefte. Berlin.
  • Saveliev D.E. (2018). Ultramafic massifs of Kraka (South Urals): structural and compositional features of peridotite-dunite-chromitite associations. Ufa: Bash. encyclopediya, 304 p. (In Russ.)
  • Saveliev D.E. (2021). Chromitites of the Kraka ophiolite (South Urals, Russia): geological, mineralogical and structural features. Mineralium Deposita.
  • Saveliev D.E., Fedoseev V.B. (2019). Solid-state redistribution of mineral particles in the upwelling mantle flow as a mechanism of chromite concentration in the ophiolite ultramafic rocks (by the example of Kraka ophiolite, the Southern Urals). Georesursy = Georesources, 21(1), pp. 31-46.
  • Saveliev D.E., Puchkov V.N., Sergeev S.N., Musabirov I.I. (2017). Deformation-induced decomposition of enstatite in mantle peridotite and its role in partial melting and chromite ore formation. Doklady Earth Sciences, 476(1), pp. 1058-1061. DOI: 10.1134/S1028334X17090161
  • Saveliev D.E., Shilovskikh V.V., Sergeev S.N., Kutyrev A.V. (2021). Chromian spinel neomineralisations and the microstructure of plastically deformed ophiolitic peridotites (Kraka massifs, Southern Urals, Russia). Mineralogy and Petrology.
  • Thayer T.P. (1964). Principal features and origin of podiform chromite deposits, and some observations on the Guleman-Soridag District, Turkey. Economic Geology, 59, pp. 1497-1524.
  • Whitney Donna L., Evans Bernard W. (2010). Abbreviations for names of rock-forming minerals. American Mineralogist, 95(1), pp. 185-187. 
  • Zhou M-F., Robinson P.T., Malpas J., Li Z. (1996). Podiform Chromitites in the Luobusa Ophiolite (Southern Tibet): Implications for Melt-Rock Interaction and Chromite Segregation in the Upper Mantle. Journal of Petrology, 37, pp. 3-21.
  • Zinov’ev V.N. (2006). Report on the results of exploration and prospecting work for chromites within the Ufalei and Karkoda ultrabasic massifs for 1998–2004 with a calculation of reserves as of 01.01.2004 and an estimate of forecast resources. Vishnevogorsk. (In Russ.)
Dmitry E. Saveliev – Dr. Sci. (Geology and Mineralogy), Professor of the Academy of Sciences of the Republic of Bashkortostan, Institute of Geology of the Ufa Federal Research Centre of Russian Academy of Sciences
16/2, K.Marks st., Ufa, 450077, Russian Federation

For citation:

Saveliev D.E. (2022). Chromitite deposits of Ufaley ultramafic massif (South Urals). Georesursy = Georesources, 24(3), pp. 197–209. DOI: