Pages
Download article

The results interpretation of thermogasdynamic studies of vertical gas wells incomplete in terms of the reservoir penetration degree

M.N. Shamsiev

Original article

DOI https://doi.org/10.18599/grs.2018.1.39-43

39-43
rus.
eng.

open access

Under a Creative Commons license

A method is proposed for interpreting thermogasdynamic studies of vertical gas wells that are incomplete in terms of the reservoir penetration degree on the basis of inverse problem theory. The inverse problem has the aim to determine the reservoir parameters for nonisothermal filtration of a real gas to a vertical well in an anisotropic reservoir. In this case, the values ​​of the pressure and temperature at the well bottom, recorded by deep instruments, are assumed to be known. The solution of the inverse task is to minimize the functional. The iterative sequence for minimizing the functional is based on the Levenberg-Marquardt method. The convergence and stability of the iterative process for various input information have been studied on specific model examples. The effect of reservoir anisotropy on the pressure and temperature changes at the bottom of the well is studied. It is shown that if the reservoir is not completely penetrated by the results of pressure and temperature measurements at the bottom of the well after its start-up, anisotropy of the reservoir can be estimated. It should be noted that when studying thermodynamic processes in the vicinity of a well, which penetrates thick layers, it is necessary to take into account not only the heat exchange of the reservoir with the surrounding rocks, but also the geothermal temperature gradient.

anisotropy, thermogasdynamic studies, incomplete well

  • Basniev K.S., Kochina I.N., Maksimov V.M. (1993). Podzemnaya gidromekhanika [Underground hydromechanics]. Moscow: Nedra, 303 p. (In Russ.)
  • Bondarev E.A., Vasil’ev V.I., Voevodin A.F., Pavlov N.N., Shadrina A.P. (1988). Termogidrodinamika sistem dobychi i transporta gaza [Thermohydrodynamics of gas production and transportation systems]. Moscow: Nauka, 270 p. (In Russ.)
  • Gritsenko A.I., Aliev Z.S., Ermilov O.M., Remizov V.V., Zotov G.A. (1995). Rukovodstvo po issledovaniyu skvazhin [Guidelines for the study of wells]. Moscow: Nedra, 523 p. (In Russ.)
  • Khayrullin M.Kh., Shamsiev M.N., Kazunin D.V. (2013). Interpretatsiya rezul’tatov gazogidrodinamicheskikh issledovaniy vertikal’nykh skvazhin s uchetom vliyaniya ob’ema stvola [Interpretation of the results of gas-hydrodynamic studies of vertical wells taking into account the influence of the borehole volume]. Gazovaya promyshlennost = Gas Industry, 2, pp. 16-17. (In Russ.)
  • Khayrullin M.Kh., Shamsiev M.N., Morozov P.E., Abdullin A.I., Salim’yanov I.T., Gadil’shina V.T. (2013). Chislennoe reshenie pryamykh i obratnykh zadach teplomassoperenosa v neftyanykh plastakh [Numerical solution of direct and inverse problems of heat and mass transfer in oil reservoirs]. Vestnik Kazanskogo tekhnologicheskogo universiteta [Bulletin of Kazan Technological University], 24(16), pp. 125-129. (In Russ.)
  • Korotaev Yu.P., Krivoshein B.L., Novakovskiy V.N. (1991). Termodinamika gazopromyslovykh sistem [Thermodynamics of gas field systems]. Moscow: Nedra, 275 p. (In Russ.)
  • Masket M. (1949). Techenie odnorodnoy zhidkosti v poristoy srede [Homogeneous fluid flow in a porous medium]. Moscow: Gostoptekhizdat, 628 p. (In Russ.)
  • Shamsiev M.N., Badertdinova E.R. (2012). Otsenka fil’tratsionnykh i teplofizicheskikh parametrov neftyanogo plasta po rezul’tatam izmereniy temperatury na zaboe skvazhiny [Evaluation of the filtration and thermophysical parameters of the oil reservoir using bottom hole temperature measurements]. Izmeritel’naya tekhnika = Measurement techniques, 3, pp. 45-47. (In Russ.)
  • Shamsiev M.N., Talipova A.A. (2015). Termogidrodinamicheskie issledovaniya vertikal’nykh gazovykh skvazhin [Thermohydrodynamic studies of vertical gas wells]. Geologiya, geofizika i razrabotka neftyanykh i gazovykh mestorozhdeniy = Geology, geophysics and development of oil and gas fields, 6, pp. 43-46. (In Russ.)
  • Shchurov V.I. (1983). Tekhnologiya i tekhnika dobychi nefti [Technology and technical equipment for oil production]. Moscow: Nedra, 510 p. (In Russ.)

Marat N. Shamsiev
Institute of Mechanics and Engineering, FRC Kazan Science Center of the Russian Academy of Sciences, Kazan, Russian Federation
2/31, Lobachevsky St., Kazan, 420111, Russian Federation

For citation:

Shamsiev M.N. (2018). The results interpretation of thermogasdynamic studies of vertical gas wells incomplete in terms of the reservoir penetration degree. Georesursy = Georesources, 20(1), pp. 39-43. DOI: https://doi.org/10.18599/grs.2018.1.39-43