Pages
Download article

Substantiation of the hydrodynamic disintegration of hydraulic fluid’s mineral component of high-clay sand in precious metals placers

N.P. Khrunina, A.Yu. Cheban

Original article

DOI https://doi.org/10.18599/grs.2018.1.51-56

51-56
rus.
eng.

open access

Under a Creative Commons license

General regularities and theoretical approaches determining hydroimpulsive effects on the mineral component of the hydraulic fluid are analyzed, with reference to the disintegration of high-clay sands of gold-bearing placers. Theoretical conclusions on the hydrodynamic effect on the solid component of the hydraulic fluid give insight into emerging processes in multicomponent media under hydrodynamic influences initiated by various sources of physical and mechanical influence. It is noted that the theoretical justification of the structurally complex hydrodynamic effect on the hydraulic fluid with the formation of phenomena arising from the collision of solid components with each other and obstacles includes the consideration of changes in such force characteristics as speed, pressure, flow power, and also changes in design parameters and characteristics of the environment. A conceptual approach is given to the theoretical substantiation of the disintegration of the hydraulic fluid’s mineral component using the example of the proposed installation. Calculation of economic indicators for the use of a hydrodynamic generator in comparison with processes based on known technologies has shown significant advantages of using the proposed installation, which can increase productivity and quality production indicators.

hydraulic fluid, mineral component, disintegration, jet separation, cavitation

  • Bogatin, Yu.V., Shvandar V. A. (1999). Otsenka effektivnosti biznesa i investitsiy [Evaluation of business and investment efficiency]. Moscow: Finansy, YuNITI – DANA, 254 p. (In Russ.)
  • Idel’chik I.E. (1975). Spravochnik po gidravlicheskim soprotivleniyam [Reference book on hydraulic resistance]. Moscow: Mashinostroenie. (In Russ.)
  • Fedotkin I.M., Nemchin A.F. (1984). Ispol’zovanie kavitatsii v tekhnologicheskikh protsessakh [The use of cavitation in technological processes]. Kiev: Vishcha shkola. Kiev. univer. publ., 68 p.(In Russ.)
  • Ganiev O.R., Ukrainskiy L.E. (2006). Eksperimental’noe issledovanie odnonapravlennykh techeniy v poristoy srede, nasyshchennoy zhidkost’yu, pri volnovom vozdeystvii [Experimental study of unidirectional flows in a porous medium saturated with a liquid under wave action]. DAN, 409(1). (In Russ.)
  • Ganiev R.F., Ukrainskiy L.E. (2011). Nelineynaya volnovaya mekhanika i tekhnologii. Volnovye i kolebatel’nyeyavleniya v osnove vysokikh tekhnologiy [Nonlinear wave mechanics and technology. Waves and oscillations in the basis of high technology]. Moscow: Institut komp’yuternykh issledovaniy; Nauchno-izdatel’skiy tsentr «Regulyarnaya i khaoticheskaya dinamika», 780 p. (In Russ.)
  • Kizeval’ter B.V. (1979). Teoreticheskie osnovy gravitatsionnykh protsessov obogashcheniya [Theoretical principles of gravity processes of enrichment]. Moscow: Nedra, 295 p. (In Russ.)
  • Khrunina N.P., Mamaev Yu.A., Pulyaevskiy A.M., Stratechuk O.V. i dr. (2011). Novye aspekty nauchnykh osnov ul’trazvukovoy dezintegratsii vysokoglinistykh zolotosoderzhashchikh peskov rossypey Priamur’ya [New aspects of the scientific basis of ultrasonic disintegration of high-clay gold-bearing sands of the Amur River placers]. Khabarovsk: Tikhookean. gor. univer., 155 p. (In Russ.)
  • Khrunina N.P., Cheban A.Yu. (2015). Otsenka vliyaniya vodonasyshcheniya na dezintegratsiyu vysokoglinistykh peskov pri razrabotke rossypey blagorodnykh metallov [Assessment of the influence of water saturation on the disintegration of high-clay sands during the development of placers of precious metals]. Vestnik Magnitogorskogo gosudarstvennogo tekhnicheskogo universiteta im. G. I. Nosova [Bulletin of Magnitogorsk State Technical University], 4(52), p. 50-55. (In Russ.)
  • Khrunina N.P. (2014). Patent 2506128. Russian Federation, MPK V03V5/00. Sposob dezintegratsii mineral’noy sostavlyayushchey gidrosmesi v usloviyakh rezonansnykh akusticheskikh yavleniy v gidropotoke i geotekhnologicheskiy kompleks dlya ego osushchestvleniya [The method of disintegration of the mineral component of hydraulic fluid under conditions of resonant acoustic phenomena in hydro-flow and the geotechnological complex for its implementation]. (In Russ.)
  • Khrunina N.P. (2014). Patent 2506127. Russian Federation, MPK V03V5/00. Sposob struyno-akusticheskoy dezintegratsii mineral’noy sostavlyayushchey gidrosmesi i gidrodinamicheskiy generator akusticheskikh kolebaniy [The method of jet-acoustic disintegration of a mineral component of hydraulic fluid and a hydrodynamic generator of acoustic oscillations]. (In Russ.)
  • Kruglitskiy N.N., Nichiporenko P.P., Simurov V.V., Minenko V.V. (1971). Ul’trazvukovaya obrabotka dispersiy glinistykh mineralov [Ultrasonic treatment of dispersions of clay minerals]. Kiev: Naukova dumka, 200 p. (In Russ.)
  • Kulagin V.A. (2000). Superkavitatsiya v energetike i gidrotekhnike [Supercavitation in power engineering and hydraulic engineering]. Krasnoyarsk: KGTU, 157 p. (In Russ.)
  • Mamaev Yu.A., Khrunina N.P. (2008). Opredelenie optimal’nykh parametrov ul’trazvukovogo izlucheniya pri vozdeystvii na kraevye zony zolotosoderzhashchikh peskov rossypey [Determination of optimal parameters of ultrasonic radiation when exposed to marginal zones of gold-bearing sands of placers]. Izvestiya vysshikh uchebnykh zavedeniy. Gornyy zhurnal = Mining Journal, p. 71-74. (In Russ.)
  • Mamaev Yu.A., Khrunina N.P. (2009). Perspektivy osvoeniya glinistykh rossypey Priamur’ya [Prospects for the development of clay placers in the Amur region]. Gornyy informatsionno-analiticheskiy byulleten = Mining Information and Analytical Bulletin, 5(2), p. 47-57. (In Russ.)
  • Myazin V.P. (1996). Povyshenie effektivnosti pererabotki glinistykh zolotosoderzhashchikh peskov [Increasing the efficiency of clayey gold-bearing sands processing]. Ch. 2. Chita: ChitGTU, 119 p. (In Russ.)
  • Promtov M.A. (2001). Pul’satsionnye apparaty rotornogo tipa: teoriya i praktika [Pulsating apparatuses of rotary type: theory and practice]. Moscow: Mashinostroenie, 260 p. (In Russ.)
  • Rudenko M.G. (1993). Kharakteristiki kavitatsionnykh ustroystv tekhnologicheskogo naznacheniya [Characteristics of cavitation devices for technological purposes]. Diss. kand. tekhn. nauk. [Cand. engineer. sci. diss.] Krasnoyarsk, 148 p. (In Russ.)

Natalia P. Кhrunina
Institute of Mining, Far Eastern Branch of the Russian Academy of Sciences
51, Turgenev St., Khabarovsk, 680000, Russian Federation

Anton Yu. Cheban
Institute of Mining, Far Eastern Branch of the Russian Academy of Sciences
51, Turgenev St., Khabarovsk, 680000, Russian Federation

For citation:

Khrunina N.P., Cheban A.Yu. (2018). Substantiation of the hydrodynamic disintegration of hydraulic fluid’s mineral component of high-clay sand in precious metals placers. Georesursy = Georesources, 20(1), pp. 51-56. DOI: https://doi.org/10.18599/grs.2018.1.51-56