Pages
Download article

Heat flow asymmetry on the mid-oceanic ridges of Northern and Southern Earth hemispheres

M.D. Khutorskoy, E.A. Teveleva

Original article

DOI https://doi.org/10.18599/grs.2018.2.122-132

122-132
rus.
eng.

open access

Under a Creative Commons license

A statistical analysis of heat flow (HF) distribution along nine geotravers crossing the mid-oceanic ridges in the Atlantic, Pacific and Indian oceans is carried out. A significant asymmetry in HF distribution is established - its mean values ​​differ on opposite sides of the ridges axis. In the Earth southern hemisphere geotraverses, their western flank has a higher HF mean, and in the northern hemisphere geotraverses there is the eastern flank. Various tectonic factors that lead to such a distribution are taken into account, but the universal cause of this regularity is suggested to be the effect of the Coriolis force, which deflects the ascending magma flow in divergent zones, when the planet rotates, respectively, to the west in the southern and to the east in the northern hemispheres.
 

heat flow, geotraverses, statistic, asymmetry, mid-oceanic ridge, Coriolis force
 

  • Anderson, R.N., Langseth M.G., Hobart M.A. (1979). Geothermal convection through oceanic crust and sediments in the Indian Ocean. Science, 204, pp. 828-832. DOI: 10.1126/science.204.4395.828
  • Anderson, R.N., Langseth M.G., Sclater J.G. (1977). The mechanisms of heat transfer through the floor on the Indian Ocean. J. Geophys. Res., 82, pp. 3391-3409.
  • Budanov V.G., Ermakov B.V., Podgornykh L.V. (1997). Geophysical asymmetry of the wings of mid-Atlantic ridge (MAR): gravity, magnetic fields, heat flow. European Geophysical Society, Annales Geophysical, part I, Society Symposia, Solid Earth Geophysics & Natural Hazards, Supplement I to Volume 15, SE27 Tectonic evolution and thermal structure at mid-ocean ridges, p.161.
  • Cannat M., Rommevaux-Jestin C., Sauter D., Deplus C., Mendel V. (1999). Formation of the axial relief at the very slow spreading Southwest Indian Ridge (49° to 69°E). J. Geophys. Res., 104, pp. 22825-22843.
  • Courtney, R.C., Recq M., (1986). Anomalous heat flow near the Crozet Plateau and mantle convection. Earth Planet. Sci. Lett., 79, pp. 373-384. DOI: https://doi.org/10.1016/0012-821X(86)90193-7
  • Gainanov A.G. (1980). Gravimetricheskie issledovaniya zemnoi kory okeanov [Gravimetric studies of the Earth’s crust of the oceans]. Moscow: Moscow State University, 240 p. (In Russ.)
  • Glebovskii V.Yu., Kaminskii V.D., Osipov V.A. (1986). Struktura anomal’nogo magnitnogo polya ot sredinnogo khrebta do Angol’skogo shel’fa [Structure of an anomalous magnetic field from the middle ridge to the Angolan shelf]. Litosfera Angol’skoi kotloviny i vostochnogo sklona Yuzhno-Atlanticheskogo khrebta [The lithosphere of the Angolan basin and the eastern slope of the South Atlantic Ridge]. Leningrad, pp. 70-80. (In Russ.)
  • Gmurman V.E. (2005). Teoriya veroyatnostei i matematicheskaya statistika [Theory of Probability and Mathematical Statistics]. Moscow: Vysshaya shkola Publ., pp. 327-349. (In Russ.)
  • Gorodnitskii A.M. (1985). Stroenie okeanicheskoi litosfery i formirovanie podvodnykh gor [The structure of the oceanic lithosphere and the formation of seamounts]. Moscow: Nauka Publ., 166 p. (In Russ.)
  • Hasterok D. (2010). Thermal Regime of the Continental and Oceanic Lithosphere. Ph.D. Dissertation, University of Utah, 156 p.
  • Hasterok et al. http://heatflow.org/data
  • Hosford A. (2001). Crustal accretion and Evolution at slow and ultra-slow spreading mid-ocean ridges. Doct. Dissertation, Massachusetts Institute of Technology, 254 p. http://hdl.handle.net/1721.1/58441
  • Hyndman R.D., Langseth M.G., Von Herzen R.P. (1987). Deep Sea Drilling project geothermal measurements: a review. Rev. Geophys., 25(8), pp. 1563-1582. DOI: https://doi.org/10.1029/RG025i008p01563
  • Jessop, A.M., Hobart M.A., Sclater J.G. (1976). The world heat flow collection – 1975. Geothermal Series 5, Energy, Mines and Resources, Earth Physics Branch, Ottawa, Canada.
  • Khutorskoy M.D., Polyak B.G. (2017). Teplovoi potok v transformnykh razlomakh Severnoi Atlantiki i Yugo-Vostochnoi Patsifiki [Heat flow in the transform faults of the North Atlantic and South-Eastern Pacific]. Geotektonika = Geotectonics, 2, pp. 55-66. (In Russ.)
  • Khutorskoy M.D., Teveleva E.A. (2016). Teplovoi potok v abissal’nykh kotlovinakh Patsifiki i Atlantiki [Heat flow in the abyssal basins of Pacific and Atlantic]. Monitoring. Nauka i tekhnologii = Monitoring. Science and technology, 4(29), pp. 20-27. (In Russ.)
  • Khutorskoy M.D., Teveleva E.A. (2018). O geotermicheskoi asimmetrii yugo-zapadnogo Indiiskogo khrebta [On the geothermal asymmetry of the southwestern Indian ridge]. Monitoring. Nauka i tekhnologii = Monitoring. Science and technology, 1. pp. 6-16. (In Russ.)
  • Khutorskoy M.D., Teveleva E.A., Podgornykh L.V. (2017). Geotermicheskaya asimmetriya transformnykh razlomov ekvatorial’noi chasti Atlanticheskogo okeana [Geothermal asymmetry of transform faults in the equatorial part of the Atlantic Ocean]. Doklady akademii nauk = Proc.of the Academy of Sciences, 475(3), pp. 325-328. (In Russ.)
  • Kuo B.-Y., Forsyth D.W. (1988). Gravity anomalies of the ridge transform system in the South Atlantic between 31 and 34,5°S. Upvelling centers and variation in crustal thickness. Mar. Geophys. Res., 10, pp. 205-232. DOI: https://doi.org/10.1007/BF00310065
  • Mashchenkov S.P., Pogrebitskii Yu.E. (1995). Simmetriya i asimmetriya SAKh po materialam kompleksnykh geofizicheskikh issledovanii na atlanticheskikh geotraversakh [Symmetry and asymmetry of the MAR on the basis of data from complex geophysical studies on Atlantic geotraverses]. Geologiya i mineral’nye resursy Mirovogo okeana [Geology and mineral resources of the World Ocean]. St. Petersburg: VNIIOkeanologiya Publ., pp. 64-79. (In Russ.)
  • Mashchenkov S.P., Pogrebitsky Yu.E., Astafurova E.G. et al. (1998). Glubinnoe stroenie i evolyutsiya litosfery Tsentral’noi Atlantiki (rezul’taty issledovanii na Kanaro-Bagamskom geotraverse) [Deep structure and evolution of the lithosphere of the Central Atlantic (research results on the Canary-Bahamian geotraverse)]. St. Petersburg: VNIIOkeanologiya Publ., 290 p. (In Russ.)
  • McKenzie D.P., Sclater J.G. (1969). Heat flow in the eastern Pacific and sea-floor spreading. Bulletin of Volcanology, 33, pp. 101-118.
  • Menard H.W. (1966). Fracture zones and offsets of the East-Pacific rise. J. Geophys. Res., 71(2), pp. 682-685. DOI: https://doi.org/10.1029/JZ071i002p00682
  • Naryshkin G.D., Pogrebitsky Yu.E. (1986). Morfostruktura dna Yugo-Vostochnoi Atlantiki [Morphostructure of the bottom of the South-East Atlantic]. Litosfera Angol’skoi kotloviny i vostochnogo sklona Yuzhno-Atlanticheskogo khrebta [The lithosphere of the Angolan basin and the eastern slope of the South Atlantic Ridge], Leningrad, pp. 10-23. (In Russ.)
  • Parsons B., Sclater I.C., (1977). An analysis of the variation of ocean floor bathymetry and heat flow with age. J. Geophys. Res., 82(5), pp. 883-890.
  • Patriat P., Sauter D., Munschy M., Parson L. (1997). A survey of the Southwest Indian Ridge axis between Atlantis II Fracture zone and the Indian Ocean Triple Junction : Regional setting and large-scale segmentation. Mar. Geophys. Res., 19, pp. 457-480. DOI: https://doi.org/10.1023/A:1004312623534
  • Pogrebitsky Yu.E., Goryachev Yu.V., Osipov V.A., Trukhalev A.I. (1990). Stroenie okeanicheskoi litosfery po rezul’tatam issledovanii na Angolo-Brazil’skom geotraverze [The structure of the oceanic lithosphere from the results of studies on the Angola-Brazil geotraverse]. Sov.geologiya = Soviet Geology, 3, pp. 8-22. (In Russ.)
  • Podgornykh L.V., Khutorskoy M.D. (1997). Planetarnyi teplovoi potok [Planetary heat flow]. A map of scale 1: 30 000 000 and an explanatory note to it. Moscow-St. Petersburg, Orgservis LTD, 65 p. (In Russ.)
  • Podgornykh L.V., Khutorskoy M.D. (1998). Asimmetriya raspredeleniya teplovogo potoka vdol’ Angolo-Brazil’skogo geotraversa (Yuzhnaya Atlantika) [Asymmetry of heat flow distribution along the Angola-Brazil geotraverse (South Atlantic)]. Doklady RAN = Proc.of the Russian Academy of Sciences, 355(4), pp. 212-215. (In Russ.)
  • Podgornykh L.V., Khutorskoy M.D. (1999). Geotermicheskaya asimmetriya sredinnykh khrebtov Mirovogo okeana [Geothermal asymmetry of the medial ridges of the World Ocean]. Geotektonika = Geotectonics, 3, pp. 21-42. (In Russ.)
  • Pollack, H.N., Hurter S.J., Johnston J.R. (1992). Global heat flow data set. World Data Center A for Solid Earth Geophysics. NOAA E/GCI, 325 Broadway, Boulder, CO 80303, USA.
  • Popova A.K., Smirnov Ya.B., Khutorskoy M.D. (1984). Geotermicheskoe pole transformnykh razlomov. Glubinnye razlomy okeanskogo dna [Geothermal field of transform faults. Deep faults in the ocean floor]. Moscow: Nauka Publ., pp.78-87. (In Russ.)
  • Pushcharovsky Yu.M., Peive A.A., Raznitsin Yu.N., Bazilevskaya E.S. (1995). Razlomnye zony Tsentral’noi Atlantiki [Fault zones of the Central Atlantic]. Tr. GIN RAN [Proc. of the Geological Institute of the Russian Academy of Sciences], 495, Moscow: GEOS Publ., 163 p. (In Russ.)
  • Shreider A.A. (2001). Geomagnitnye issledovaniya Indiiskogo okeana [Geomagnetic studies of the Indian Ocean]. Moscow: Nauka Publ., 320 p. (In Russ.)
  • Sorokhtin O.G. (1974). Global’naya evolyutsiya Zemli [Global evolution of the Earth]. Moscow: Nauka Publ., 184 p. (In Russ.)
  • Von Herzen R.P., Uyeda S. (1963). Heat flow through the eastern Pacific ocean floor. J. Geophys. Res., 68(14), pp. 4219-4250. DOI: https://doi.org/10.1029/JZ068i014p04219
     

Mikhail D. Khutorskoy
Geological Institute of the Russian Academy of Sciences
7 Pyzhevsky lane, Moscow, 119017, Russain Federation

Elena A. Teveleva
Geological Institute of the Russian Academy of Sciences
7 Pyzhevsky lane, Moscow, 119017, Russain Federation

 

For citation:

Khutorskoy M.D., Teveleva E.A. (2018). Heat flow asymmetry on the mid-oceanic ridges of Northern and Southern Earth hemispheres. Georesursy = Georesources, 20(2), pp. 122-132. DOI: https://doi.org/10.18599/grs.2018.2.122-132