Download article

Emission seismic tomography – the tool to study fracturing and fluidodynamics of the Earth crust

I.Ya. Chebotareva

Original article



open access

Under a Creative Commons license

The article presents the results of seismotomographic monitoring of emission sources associated with fractured zone, tectonic faults and fluid filtration in the high permeable rocks. It is shown that the Earth’s natural seismic noise recorded by surface array can be used to study the geodynamic processes caused by the presence of such inhomogeneities. The source of useful information is the extremely weak spatially coherent component of the seismic wave field – the seismic emission generated by background deformation in the energy-saturated volumes of rocks. Additional external technological and natural impact activates latent volumes of geophysical heterogeneity, which reveals new emission targets hidden in the background state. It makes to conduct additional exploration of the field within a radius of several kilometers during hydraulic fracturing. The article also touches on the history of discovery of the seismic emission phenomenon and the mechanisms of generation of a low-frequency branch of emission as a result of amplitude instability of envelopes of high-frequency acoustic oscillations excited as a result of energetic impact on the medium. Low-frequency emission (1-100 Hz) provides the remote study of high-frequency (1-100 kHz) emission oscillations in the energy-saturated volumes located at a great distance from the seismic array.


emission seismic tomography, seismic emission, structurally inhomogeneous media, oil and gas field


  • Aki K, Richardson P. (1983). Quantitative seismology. Theory and methods. Moscow: Mir., v. 2, 831 p. (In Russ.).
  • Aleksandrov S.I., Mishin V.A., Burov D.I. 2015. Problems of well and ground microseismic monitoring of hydraulic fracturing. Expozitciya Neft’ i Gaz = Exposition Oil & Gas, 6(45), pp. 58-63. (In Russ.)
  • Astrahancev Yu.G., Guberian D.M., D’yakonov V.P., Pevzner S.L., Troyanov A.K., YAkovlev Yu.N. (2007). Geoacoustic noise in the Kola superdeep well. Vestnik MGTU, 10(2), pp. 231-235. (In Russ.)
  • Atlas of temporal variations of natural processes. (1994). Project Man. N.P. Laverov. Ed. A.V. Nikolaev, A.G. Gamburcev. Moscow: Nauchnyy mir, v. 1, 176 p. (In Russ.)
  • Bovenko V. N. (1987). Self-oscillatory model of acoustoemission and seismic phenomena. Dokl. AN SSSR, 297(5), pp. 1103-1106. (In Russ.)
  • Chebotareva I.Ya., Kushnir A.F., Rozhkov M.V. (2008). Elimination of high-amplitude noise during passive monitoring of hydrocarbon deposits by the emission tomography method. Izvestiya, Phys. Solid Earth, 44, pp. 1002-1007.
  • Chebotareva I.Ya. (2010a). New Algorithms of Emission tomography for passive seismic monitoring of a producing hydrocarbon deposit. Part I. Algorithms of Processing and Numerical Simulation. Izvestiya, Phys. Solid Earth, 46(3), pp. 187-198.
  • Chebotareva I.Ya. (2010b). New Algorithms of Emission tomography for passive seismic monitoring of a producing hydrocarbon deposit. Part II. Results of Real Data Processing. Izvestiya, Phys. Solid Earth, 46(3), pp. 199-215.
  • Chebotareva I.Ya. (2011). Methods for passive study of the geological environment using seismic noise. Acoust. Phys., 57(6), pp. 857-865.
  • Chebotareva I.Ya. (2012). Structure and dynamics of geomedia in noise seismic fields. Methods and experimental results. Akustika neodnorodnyh sred. Ezhegodnik Rossijskogo akusticheskogo obshchestva. Moscow: GEOS, 12, pp. 147-156. (In Russ.)
  • Chebotareva I.Ya., Volodin I.A. (2012). Images of Hydraulic Fracture in Seismic Noise. Doklady Earth Sciences, 444(1), pp. 621-625.
  • Chebotareva I.Ya. (2017). Emission tomography – basic tool for technologies for studies of hydrocarbon deposits. Aknualnii problemy nefti i gasa = Actual problems of oil and gas. DOI: 10.29222/ipng.2078-5712.2017-17.art8 (in Russ.)
  • Chebotareva I.Ya, Volodin I.A., Dryagin V.V. (2017). Acoustic Effects in the Deformation of Structually Inhomogeneous Media. Acoustical Physics, 63(1), pp. 84-93.
  • Chebotareva, I.Ya. (2018). Ray Tracing Methods in Seismic Emission Tomography. Izvestiya, Physics of the Solid Earth, 54(2), pp. 201-213. DOI: 10.1134/S1069351318020040
  • Darvin D.G. (1965). Tides and related phenomena in the solar system. Moscow: Nauka, 106 p. (In Russ.)
  • Diakonov B.P., Troyanov A.K., Nazarov A.N., Fadeev V.A. (1989). Seismoacoustic noise on deep horizons. Doklady AN SSSR, 309(2), pp. 314-318. (In Russ.)
  • Diakonov B.P., Karryev B.S., Khavrishkin O.B., Nikolaev A.V., Rykunov L.N., Seroglazove R.R., Trojanov A.K., Tsyplakov V.V. (1990). Manifestation of earth deformation processes by high-frequency seismic noise characteristics. Phys. Earth Planet. Inter, 63, pp. 151-162.
  • Diakonov B.P., Troyanov A.K., Kusonskiy O.A., Nazarov A.N., Fadeev V.A. (1991). Geological information of downhole surveys of high-frequency seismoacoustic noise. Vulkanologiya i seysmologiya = Volkanology and Seismology, 1, pp. 112-116. (In Russ.)
  • Diakonov B.P., Martyshko P.S., Troyanov A.K., Astrahancev YU.G., Nachapkin N.I. (2010). Isolation of periodicities of low-frequency deformation processes in variations of electromagnetic radiation in the Ural superdeep well. Doklady RAN, 430(1), pp. 105-107. (In Russ.)
  • Dinariev O.Yu., Nikolaevskij V.N. (1993). Creep of rocks as a source of seismic noise. Doklady RAN, 331(6), pp. 739-741. (In Russ.)
  • Dinariev O.Yu., Nikolaevskij V.N. (1997). Multiple period increase in the propagation of waves in elastic bodies with a dissipative microstructure. Izv. RAN, MTT, 6, pp. 78-85. (In Russ.)
  • Economides M., Oligney R., Valko P. (2002). Unified fracture design. Bridging the gap between theory and practice. Alvin. Texas: Orsa Press. 200 р.
  • Galperin E.I., Vinnik L.P., Petersen N.V. (1987). On modulation of high-frequency seismic noise by tidal deformations of the lithosphere. Izv. AN SSSR. Ser. Fizika Zemli, 12, pp. 102-109.
  • Gamburcev G.A. (1960). Izbrannye trudy. Moscow: AN SSSR, pp. 424-425. (In Russ.)
  • Gapeev D.N., Erohin G.N., Rodin S.V., Sedajkin R.D., Smirnov I.I. (2014). New possibilities of applying passive microseismic monitoring for revealing structural-tectonic features of oil and gas fields. Vestnik Baltiyskogo federal’nogo universiteta im. I. Kanta, 4, pp. 113-120. (In Russ.)
  • Garagash I.A. (2002). Model of dynamics of fragmented media with moving blocks. Fizicheskaya mezomekhanika, 5( 5), pp. 71-77. (In Russ.)
  • Golicyn B.B. (1960). Izbrannye trudy. Moscow: AN SSSR, v. 2, pp. 411-413. (In Russ.)
  • Gordeev E.I., Rykunov L.N. (1976). Spectra of P-waves from remote earthquakes in the frequency range 1-10 Hz. Izv. AN SSSR. Ser.Fizika Zemli, 7, pp. 90-92. (In Russ.)
  • Havroshkin O.B. (1999). Some problems of nonlinear seismology. Moscow: OIFZ RAN, 286 p. (In Russ.)
  • Kouznetsov, A.A. Radwan, I.A. Chirkin, E.G. Rizanov, S.O. Koligaev. (2016). Combining seismic waves of different classes in exploration of hydrocarbon fields (new seismic exploration methodology). Tekhnologii seysmorazvedki. (3), pp. 38-47. DOI: 10.18303/1813-4254-2016-3-38-47. (In Russ.)
  • Krylov A.L., Nikolaevskiy V.N., EHl’ G.A. (1991). Mathematical model of nonlinear generation of ultrasound by seismic waves. Doklady AN SSSR, 318(6), pp. 1340-1344. (In Russ.)
  • Leet L.D., Leet F.L. (1962). Cause of microseisms – a theory. Geol. Soc. Amer. * Bull., 72(8), pp. 1021-1022.
  • Lukk A.A., Deshcherevskij A.V., Sidorin A.YA., Sidorin I.YA. (1996). Variations of geophysical fields as a manifestation of deterministic chaos in a fractal environment. Moscow: OIFZ RAN, 210 p.
  • Madariaga R. (1976). Dynamics of an expanding circular falt. Bulletin of Seismological Society of America, 66(3), pp. 669-666.
  • Maksimov L.A., Vedernikov G.V., Yаshkov G.N. (2015). Geodynamic noise of hydrocarbon pools and passive and active seismic CDPM. Expozitciya Neft’ i Gaz = Exposition Oil & Gas, 6(45), pp. 55-57. (In Russ.)
  • Maxwell S. (2010). Microseismic: growth born from success. The Leading Edge, 29, pp. 338-343.
  • Nanney C.A. (1958). Possible correlations between earthquakes and microseisms. Nature, 181, pp. 802-803.
  • Naumenko B.N. (1979). On the phenomenon of partial elimination of tectonic stresses by storm microseisms. Izv. AN SSSR. Ser. Fizika Zemli, 8, pp. 72-75. (In Russ.)
  • Nikolaev A.V., Troickiy P.A, Chebotareva I.YA. (1983). Method of seismic prospecting: A. C. 1000962 SSSR. No. 3213796, declared 08.12.80; Publ. 28.02.83. Otkrytiya, izobreteniya, 8, 4 p. (In Russ.)
  • Nikolaevskiy V.N. (1996). Geomechanics and fluid dynamics. Moscow: Nedra, 448 p. (In Russ.)
  • Rothert E., Shapiro S. A. (2007). Statistics of fracture strength and fluid-induced microseismicity. Journal of Geophysical Research, 112 (B04309), pp.1-16. DOI: 10.1029/2005JB003959
  • Rykunov L.N., Havroshkin O.B., Cyplakov V.V. (1983). The phenomenon of modulation of high-frequency seismic noise of the Earth. Sertificate No. 282, Moscow (In Russ.)
  • Shapiro S.A., Rothert E., Rath V., and Rindschwentner J. (2002). Characterization of fluid transport properties of reservoirs using induced microseismicity. Geophysics, 6, pp. 7212-220.
  • Sibiryakov B.P., Bobrov B.A. (2008). Origin of acoustic emission under static loading of sands. Fizicheskaya mezomekhanika, 11(1), pp. 80-84. (In Russ.)
  • Tchebotareva I. Ya., Nikolaev A.V., Sato H. (2000). Seismic Emission Activity of Earth’s Crust in Northern Kanto, Japan. Phys. Earth Planet. Inter, 120(3), pp.167-182.
  • Volodin I. A., Chebotareva I. Ya. (2014). Seismic Emission in Technological Impact Zones. Acoustical Physics, 60(5), pp. 543-554. DOI: 10.1134/S1063771014050145
  • Zarembo L.K., Krasilnikov V.A. (1966). Introduction to nonlinear acoustics. Moscow: Nauka, 519 p. (In Russ.)
  • Zhadin V.V. (1971). On the frequency composition of longitudinal wave records from remote earthquakes. Izv. AN SSSR, Ser. Fizika zemli, 5, pp. 99-101. (In Russ.)

Irina Ya. Chebotareva
Oil and Gas Research Institute of the Russian Academy of Sciences
Gubkin st., 3, Moscow, 117971, Russian Federation


For citation:

Chebotareva I.Ya. (2018). Emission seismic tomography – the tool to study fracturing and fluidodynamics of the Earth crust. Georesursy = Georesources, 20(3), Part 2, pp. 238-245. DOI: