Pages
Download article

Analysis of the composition and properties of heavy oils in situ by Low Field NMR relaxation method

V.Ya. Volkov, B.V. Sakharov, N.M. Khasanova, D.K. Nurgaliev

Original article

DOI https://doi.org/10.18599/grs.2018.4.308-323

308-323
rus.
eng.

open access

Under a Creative Commons license

For the analysis of heavy oils, the method of simultaneous measurement of the free induction decay (FID) together with the decay of the echo signal in the Carr-Purcell-Meiboom-Gill (CPMG) pulse program was used. The measurements were carried out on a «Chromatek-Proton 20M» NMR analyzer operating at a frequency of 20 MHz. A special control program was created on the NMR analyzer that automatically tunes and measures the full FID curve, then switches to measuring the decay of the echo amplitude by the CPMG pulse sequence, and then the investigation ends with a joint processing of all the experimental data. This method makes it possible to measure the amplitudes of NMR signals and the relaxation times T2 of protons of heavy oil components in situ, including asphaltenes, without any perturbations in the analyzed system. Under the influence of paramagnetic centers located in asphaltenes, the amplitude-relaxation characteristics of oil protons are divided into 7 groups associated with solid asphaltenes in crystalline and amorphous states, resins with high and low density, aromatic and saturated compounds. The NMR amplitudes of these fractions correlate well with the group composition of heavy oils as determined by gravitational-chromatographic SARA method. The combined FID + CPMG method can be recommended for determining the SARA composition and other properties of oil in situ. The behavior of fractions of heavy oil in the temperature range (-15оС ÷ +60оС) was investigated by SARA-NMR method. For the first time in situ, it has been shown that resins participate in the formation of asphaltenes in a closed volume when the oil is cooled from a stable state at room temperature, and vice versa, asphaltenes are disaggregated by heating with the release of resins.

The SARA-NMR method is promising for the on-line monitoring of the production, transportation and processing of heavy oil in real conditions of temperature, pressure and dissolved gases. However, the design of the NMR sensor must be adapted to industrial applications. The possibilities of designing NMR probes on process pipelines of larger diameter than in laboratory instruments can be extended taking into account the procedure proposed for correcting the inhomogeneity of the magnetic field in the probed volume based on the FID signal of the liquid oil fraction.

 

LF-NMR, vanadyl, SARA, asphaltenes, resins, saturated, aromatic compounds

 

  • Abedini A., Siavash A., Torabi F., Saki Y., Dinarvand N. (2011). Mechanism of the reversibility of asphaltene precipitation in crude oil. J. Petrol. Sci. and Eng., 78, рp. 316-320. 
  • Achugasim O., Ekpo I.E. (2015). Precipitation of Heavy Organics (Asphaltenes) from Crude Oil Residue Using Binary Mixtures of n-Alkanes. Advances in Chemical Engineering and Science, 5, pp. 96-101. http://dx.doi.org/10.4236/aces.2015.51010
  • Akbarzade K., Allenson S., Krik D. et al. (Summer 2007). Asfalteny: problemy i perspektivy [Asphaltenes: problems and perspectives]. Neftegazovoye obozreniye = Oil and gas review, pp. 28-53. (In Russ.)
  • Akkurt Ridwan, Bakman G. Nate, Chen Kao Ming, and et.al. (Winter 2008-2009). Novyye vozmozhnosti yaderno-magnitnogo karotazha [New opportunities for nuclear magnetic logging]. Neftegazovoye obozreniye = Oil and gas review, 20(4), pp. 4-27. (In Russ.)
  • Barbosa L.L., Sad C.M.S., Morgan V.G., et al. (2013). Time-domain proton nuclear magnetic resonance and chemometrics for identification and classification of Brazilian petroleum. Energy Fuels, 27, pр. 6560-6566. https://doi.org/10.1021/ef4015313
  • Bissada K.K. (Adry), Jingqiang Tan, Ewa Szymczyk, Mike Darnell, Mei Mei (2016). Group-type characterization of crude oil and bitumen. Part I: Enhanced separation and quantification of saturates, aromatics, resins and asphaltenes (SARA). Organic Geochemistry, 95, pp. 21-28. https://doi.org/10.1016/j.orggeochem.2016.02.007
  • Carr H.Y. and Purcell E.M. (1954). Effects of Diffusion on Free Precession in Nuclear Magnetic Resonance Experiments. Phys. Rev., 94. pp. 630-638. https://doi.org/10.1103/PhysRev.94.630
  • Coates G.R, Xiao L, Prammer M.G. (2001). Karotazh YAMR. Printsipy i primeneniye [NMR Logging: Principles of Applications]. Houston: Halliburton Energy Services Publ., 342 с.
  • Dunn K-J, Bergman D.J., Latorraca G.A. (2002). Nuclear Magnetic Resonance Petrophysical and Logging Applications. New York: Pergamon.
  • Freedman R., Anand V., Grant B., Ganesan K., Tabrizi P., Torres R,. Catina D., Ryan D., Borman C., Krueckl C. (2014). A compact high-performance low-field NMR apparatus for measurements on fluids at very high pressures and temperatures. Rev Sci Instrum, Feb. 85(2), 025102. doi: 10.1063/1.4863857
  • Gutowsky H.S., Roger Ray B. and Rutledge R.L. (1958). Carbonaceous free radicals in crude petroleum. J. Chem. Phys., 28, pp. 744-745.https://doi.org/10.1063/1.1744250
  • Guzmán Roque, Ancheyta Jorge, Trejo Fernando, Rodríguez Silvano (2017). Methods for determining asphaltene stability in crude oils. Fuel, 188, pp. 530-543. https://doi.org/10.1016/j.fuel.2016.10.012
  • Jewell D.M., Weber J.H., Bunger J.W., Plancher H., Latham D.R. (1972). Ion-exchange, coordination, and adsorption chromatographic separation of heavy-end petroleum distillates. Analytical Chemistry, 44, pp. 1391-1395. https://doi.org/10.1021/ac60316a003
  • Kashaev R.S. Viscosity Correlations with Nuclear (Proton) Magnetic Resonance Relaxation in Oil Disperse Systems (2018). Applied Magnetic Resonance, 49(3), pp. 1-7. https://doi.org/10.1007/s00723-018-0977-2
  • Kayukova G.P., Kiyamova A.M., Romanov G.V. et al. (2008). Technological qualities of natural bitumen of Tatarstan, depending on the chemical and geochemical characteristics of their composition. Neftyanoye khozyaystvo = Oil industry, 1, pp. 22-27. (In Russ.)
  • Kharrat, A.M., Zacharia, J., Cherian, V.J., Anyatonwu, A. (2007). Issues with comparing SARA methodologies. Energy & Fuels, 21, pp. 3618-3621. https://doi.org/10.1021/ef700393a
  • Khasanova Nailia, Sakharov Boris, Volkov Vladimir, Nourgaliev Danis (2017). Low-field NMR method for analysis of heavy oils without extraction of asphaltenes. In Book: “New methods and technologies in petroleum geology”. 17th Int. Multidiscip. Scientific GeoConference SGEM 2017. Vienna, Austria, 17(14), pp. 297-315.
  • Korb Jean-Pierre, Louis-Joseph Alain, and Benamsili Lyès (2013). Probing Structure and Dynamics of Bulk and Confined Crude Oils by Multiscale NMR Spectroscopy, Diffusometry, and Relaxometry. J. Phys. Chem., B. 117, pp. 7002-7014. https://doi.org/10.1021/jp311910t
  • Majumdar Rudraksha Dutta, Montina Tony, Mullins Oliver C., Hazendonk Paul (2017). Insights into asphaltene aggregate structure using ultrafast MAS solid-state 1H-NMR spectroscopy. Fuel, April 193, pp. 359‑368. https://doi.org/10.1016/j.fuel.2016.12.082
  • Maqbool Tabish H., Srikiratiwong Perapat and Fogler Scott (2011). Effect of Temperature on the Precipitation Kinetics of Asphaltenes. Energy Fuels, 25(2), pp. 694-700. https://doi.org/10.1021/ef101112r
  • Marc Jones, Spencer E. Taylor (2015). NMR relaxometry and diffusometry in characterizing structural, interfacial and colloidal properties of heavy oils and oil sands. Advances in Colloid and Interface Science, 224, pp. 33-45. http://dx.doi.org/10.1016/j.cis.2015.07.007
  • Mirotchnik K., Kantzas A., Starosud A., Aikman M. (2001a). A New method for group analysis of petroleum fractions in unconsolidated porous media. J Can Pet Technol., 40, pp. 38-44. https://doi.org/10.2118/01-07-02
  • Mirotchnik K.D., Allsopp K., Kantzas A., Curwen D., Badry R. (2001b). Low-field NMR method for bitumen sands characterization: a new approach. SPE Reserv Eval Eng., 4, pp. 88-96. https://doi.org/10.2118/71208-PA
  • Mitchell J., Gladden L.F., Chandrasekera T.C., Fordham E.J. (2014). Low-field permanent magnets for industrial process and quality control. Progress in Nuclear Magnetic Resonance Spectroscopy, 76, pp. 1-60. https://doi.org/10.1016/j.pnmrs.2013.09.001
  • Morgan V.G., Barbosa L.L., Lacerda V.Jr., at al. (2014). Evaluation of the Physicochemical Properties of the Postsalt Crude Oil for Low-Field NMR. Ind. Eng. Chem. Res., 53, pp. 8881-8889. https://doi.org/10.1021/ie500761v
  • Muhammad Asif, Azeredo Rodrigo Bagueira de Vasconcellos (2014). 1H NMR spectroscopy and low-field relaxometry for predicting viscosity and API gravity of Brazilian crude oils – A comparative study. Fuel, 130, pp.‑126-134. https://doi.org/10.1016/j.fuel.2014.04.026
  • Mullins Oliver C., Sabbah Hassan, Eyssautier Joëlle and et al. (2012). Advances in Asphaltene Science and the Yen-Mullins Model. Energy Fuels, 26(7), pp. 3986-4003. https://doi.org/10.1021/ef300185p
  • Mutina A.R., Hürlimann M.D. (2008). Correlation of transverse and rotational diffusion coefficient: A probe of chemical composition in hydrocarbon oils. J. Phys. Chem. A, 112, 3291-3301. https://doi.org/10.1021/jp710254d
  • Nikolin I.V., Safonov S.S., Skirda V.D., Shkalikov N.V. (2008). Sposob opredeleniya soderzhaniya parafinov i asfal’tenov v nefti [Method for determining the content of paraffins and asphaltenes in oil]. Patent RF No. 2333476 (In Russ.)
  • Nikolin I.V., Shkalikov N.V., Skirda V.D. (2010). Sposob opredeleniya soderzhaniya zhidkofaznykh i tverdotel’nykh komponent v smesi uglevodorodov [Method for determining the content of liquid-phase and solid-state components in a mixture of hydrocarbons]. Patent RF No. 2383884 (In Russ.)
  • NMR analyzer «Chromatek-Proton 20M» http://www.chromatec.ru/products/main/nmr/proton20m/
  • Prunelet Alexandre, Fleury Marc, Cohen-Addad Jean-Pierre (2004). Detection of asphaltene flocculation using NMR relaxometry. C. R. Chimie, 7, pp. 283-289. https://doi.org/10.1016/j.crci.2003.11.011
  • Silva Sandra L., Silva Artur M.S., Ribeiro Jorge C., at al. (2011). Chromatographic and spectroscopic analysis of heavy crude oil mixtures with emphasis in nuclear magnetic resonance spectroscopy: A review. Analytica Chimica Acta, 707(1-2), 30, pp. 18-37. https://doi.org/10.1016/j.aca.2011.09.010
  • Sakharov B.V., Khasanova N.M., Volkov V.Ya. (2015). Joint measurement and combined processing of SI and echo signals in the CPMG series for the evaluation of the component composition of heavy oils. Sb.tezisov VI Vseros. konf.: «Novyye dostizheniya YAMR v strukturnykh issledovaniyakh» [Proc. VI All-Russian Conf. «New NMR achievements in structural research»]. Kazan, pp. 67-68. (In Russ.)
  • Shadman Mohammad Mahdi, Dehaghani Amir Hossein Saeedi, Badizad Mohammad Hasan (2017). How much do you know about the methods for determining onset of asphaltene precipitation? Petroleum, 3, pp. 287-291. https://doi.org/10.1016/j.petlm.2016.08.011
  • Shkalikov N.V., (2010). Issledovaniye tyazhelykh neftey i ikh komponent metodom YAMR [Investigation of heavy oils and their components by NMR]. Diss. kand. fiz.-mat. nauk. [Cand. phys. and math. sci. diss.] Kazan. (In Russ.)
  • Shkalikov N.V., Skirda V.D., Arkhipov R.V. (2006). Solid-like Component in the Spin-Spin NMR-Relaxation of Heavy Oils. Magnetic Resonance in Solids. Electronic Journal, 8(1), pp. 38-42. http://mrsej.ksu.
  • Shkalikov N.V., Ganeeva Yu M., Yusupova T. N., Skirda V.D. (2008). The characterization of asphaltenes by 1H NMR relaxation method: microsecond range of spin-spin relaxation times. Magnetic Resonance in Solids. Electronic Journal, 10(1). pp. 38-42. http://mrsej.ksu
  • Stapf Siegfried, Ordikhani-Seyedlar Amin, Ryan Nina, Mattea Carlos, Kausik Ravinath, Freed Denise E., Song Yi-Qiao, and Hürlimann Martin D. (2014). Probing Maltene −Asphaltene Interaction in Crude Oil by Means of NMR Relaxation. Energy Fuels, 28, pp. 2395-2401. https://doi.org/10.1021/ef4024788
  • Takeshi Yamanobe, Hiroki Uehara, and Masaki Kakiage (2010). Practical NMR Analysis of Morphology and Structure of Polymers. Annual Reports on NMR Spectroscopy, 70, pp. 203-239. https://doi.org/10.1016/S0066-4103(10)70003-X
  • Trezza E., Haiduc A.M., Goudappel G.J. W. and van Duynhoven J. P. M. (2006). Rapid phase-compositional assessment of lipid-based food products by time domain NMR. Magn. Reson. Chem., 44, pр.1023-1030. https://doi.org/10.1002/mrc.1893
  • Volkov V.Ya., Sakharov B.V., Khasanova N.M. (2016a). Investigation of heavy oils by NMR relaxation in low fields. Sb.tezisov mezhd. simp. «Magnitnyy rezonans: ot fundamental’nykh issledovaniy k prakticheskim prilozheniyam». [Proc. International symposium “Magnetic resonance: from fundamental research to practical applications”]. Kazan, pp. 59-60. (In Russ.)
  • Volkov V.Ya., Sakharov B.V., Khasanova N.M. (2016b). SARA-YAMR method gruppovogo analiza neftey in situ. [SARA-NMR method for group analysis of oils in situ]. Kazan: Ikhlas Publ., v.1, pp. 97-100. (In Russ.)
  • Volkov V.Ya., Sakharov B.V., Khasanova N.M. (2017). Monitoring the properties of crude heavy oils using magnetic radiospectroscopy. Mater. nauchno-prakt. konfer.«Gorizontal’nyye skvazhiny i GRP v povyshenii effektivnosti razrabotki neftyanykh mestorozhdeniy» [Proc. Sci. and Pract. Conf. “Horizontal wells and fracturing in increasing the efficiency of oil fields development”]. Kazan: SLOVO Publ., pp. 149-152. (In Russ.)
  • Vorapalawut Nopparat, Nicot Benjamin, Louis-Joseph Alain and Korb Jean-Pierre (2015). Probing dynamics and interaction of maltenes with asphaltene aggregates in crude oils by multiscale NMR. Energy Fuels, 29(8), pp. 4911-4920. https://doi.org/10.1021/acs.energyfuels.5b01142
  • Yang Z., Hirasaki G.J. NMR measurement of bitumen at different temperatures. (2008). J. Magn. Reson., 192(2), pp. 280-293. https://doi.org/10.1016/j.jmr.2008.03.007
  • Yashchenko I.G. (2012). Tyazhelyye vanadiyenosnyye nefti Rossii [Heavy vanadium-bearing oils in Russia]. Izvestiya Tomskogo politekhnicheskogo universiteta = Proceedings of Tomsk Polytechnic University, 321(1), pp. 105‑111. (In Russ.)
  • Zielinski L., Saha I., Freed D.E., and H€urlimann M.D. (2010). Probing Asphaltene Aggregation in Native Crude Oils with Low-Field NMR. Langmuir, 26(7), pp. 5014-5021. https://doi.org/10.1021/la904309k
  • Zielinski, L.; Hürlimann, M. D. (2011). Nuclear Magnetic Resonance Dispersion of Distributions as a Probe of Aggregation in Crude Oils. Energy Fuels, 25(11), pp. 5090-5099. https://doi.org/10.1021/ef200883r
  •  

Vladimir Ya. Volkov
Kazan (Volga region) Federal University
MIREA – Russian Technological University
78, Vernadsky Ave., Moscow, 119454, Russian Federation

Boris V. Sakharov
Kazan (Volga region) Federal University
State Research Center for Applied Microbiology and Biotechnology
Obolensk, Serpukhov district, Moscow region, 142279, Russian Federation

Nailia M. Khasanova
Kazan (Volga region) Federal University
4/5, Kremlevskaya st., Kazan, 420008, Russian Federation

Danis K. Nurgaliev
Kazan (Volga region) Federal University
4/5, Kremlevskaya st., Kazan, 420008, Russian Federation

 

For citation:

Volkov V.Ya., Sakharov B.V., Khasanova N.M., Nurgaliev D.K. (2018). Analysis of the composition and properties of heavy oils in situ by Low Field NMR relaxation method. Georesursy = Georesources, 20(4), Part 1, pp. 308-323. DOI: https://doi.org/10.18599/grs.2018.4.308-323