Pages
Download article

Geothermal monitoring as a way to predict volcanic eruptions and estimate geothermal energy resources

A.V. Muravyev

Original article

DOI https://doi.org/10.18599/grs.2018.4.413-422

413-422
rus.
eng.

open access

Under a Creative Commons license

Geothermal monitoring is an effective tool for predicting volcanic eruptions, as well as for assessing the geothermal energy potential of geothermal areas. Increased magmatic activity, an indicator of which is the penetration of hot volcanic gases through faults, has been observed in recent years on the Elbrus volcano. Since Elbrus is a year-round resort of world importance, in order to control volcanic and seismic activity, forecast and reduce the risks of eruption and earthquakes, it is recommended to drill a observation well on the slope of Elbrus with the installation of an underground fiber-optic system for temperature and pressure monitoring. In combination with microseismic, gravimetric and inclinometric observations, satellite IR imaging and geochemical gas testing, the continuously obtained information on the thermodynamic conditions of the subsoil will provide a reliable complex for the operational forecast of natural geophysical disasters. Utilization of the geothermal energy of the magma chamber in the artificial circulation systems of small GeoPPs, water injection from the surface and obtaining superheated water and steam from producing wells will reduce the risks of eruption and at the same time provide the resort with environmentally friendly thermal and electric power. Technological justification for the construction of a GeoPP will also require exploratory drilling to the area of ​​hot rocks, therefore information on the distribution of temperature and pressure along the wellbore is doubly valuable.

In geothermal fields that are under development, to assess the spatial heterogeneity of the filtration characteristics can be a useful method of “thermal interference testing” – as a complement or alternative to hydrodynamic interference testing. It is recommended to conduct such an experiment at the North Mutnovsky geothermal field.

 

Geothermal, monitoring, fiber optic measuring systems, Elbrus, Mutnovsky, volcano, prediction, volcanic eruptions, geothermal energy resources, thermal interference testing

 

  • Bogatikov O.A. (2006). Issledovanie «spyashchikh» vulkanov [The study of «sleeping» volcanoes]. Sb.: Lektsii laureatov Demidovskoi premii (1993-2004) [Coll. papers: Lectures of the Demidov Prize winners (1993-2004)]. Ekaterinburg: Ekb. Univer. publ., pp. 483-495. (In Russ.)
  • Bogatikov O.A. et al. (1998). Radiouglerodnoe datirovanie golotsenovykh izverzhenii vulkana El’brus (Severnyi Kavkaz, Rossiya) [Radiocarbon dating of the Holocene eruptions of Elbrus volcano (North Caucasus, Russia)]. Dokl. RAN = Proc. of the Russian Academy of Sciences, 363(2), pp. 219-221. (In Russ.)
  • Global’nye izmeneniya prirodnoi sredy i klimata [Global environmental and climate change]. (1997). Izbrannye nauchnye trudy GNTPR. Ed. Ak. Laverova N.P. M.: 433 p. (In Russ.)
  • Gorbatikov A.V., Rogozhin E.A., Stepanova M.Yu., Kharazova Yu.V., Rybin A.A., Sysolin A.I., Andreeva N.V. (2018). Osobennosti glubinnogo stroeniya i vulkanicheskoi aktivnosti gory El’brus po kompleksu geologo-geofizicheskikh dannykh [Features of the deep structure and volcanic activity of Mount Elbrus using the complex of geological and geophysical data]. V Sb.: Problemy tektoniki i geodinamiki zemnoi kory i mantii [Coll. papers: Problems of tectonics and geodynamics of the crust and mantle]. Moscow: GEOS, V.2, pp. 149-154. (In Russ.)
  • Izmeneniya okruzhayushchei sredy i klimata. Prirodnye i svyazannye s nimi tekhnogennye katastrofy [Environmental and climate change. Natural and related technological disasters]. (2007). Program No. 16 of the Presidium of the Russian Academy of Sciences. Vol.1: Seismic processes and catastrophes, recent volcanism. Ed.: Laverov N.P. Moscow: IGEM RAN, 198 p. (In Russ.)
  • Izmeneniya okruzhayushchei sredy i klimata. Prirodnye i svyazannye s nimi tekhnogennye katastrofy [Environmental and climate change. Natural and related technological disasters]. (2008). Program No. 16 of the Presidium of the Russian Academy of Sciences. Vol.2: The newest volcanism of Northern Eurasia: patterns of development, volcanic danger, connection with deep-seated processes and changes in the natural environment and climate. Ed.: Kovalenko V.I., Yarmolyuk V.V., Bogatikov O.A. Moscow: IGEM RAN, IFZ RAN. (In Russ.)
  • Likhodeev D.V. (2013). Issledovanie teplovogo i navedennogo volnovykh protsessov v raione El’brusskogo vulkanicheskogo tsentra [Study of thermal and induced wave processes in the area of the Elbrus volcanic center]. Avtoref. diss. k.f.-m.n. [Abstract Cand. phys. and math. sci. diss.]. Moscow.
  • Melekestsev I.V., Braitseva O.K., Ponomareva V.V. (1987). Dinamika aktivnosti vulkanov Mutnovskii i Gorelyi v golotsene [Dynamics of activity of Mutnovsky and Gorely volcanoes in the Holocene]. Vulkanol. i seismologiya = Volcanology and seismology, 3, pp. 3-18. (In Russ.)
  • Mochalov A. Climbing to Elbrus – photo essay. http://www.mochaloff.ru/elbrus-azau
  • Muravyev A.V., Polyak B.G., Turkov V.P., Kozlovtseva S.V. (1983). Povtornaya otsenka teplovoi moshchnosti fumarol’noi deyatel’nosti vulkana Mutnovskogo (Kamchatka) [Re-evaluation of the thermal power of the fumarole activity of the Mutnovsky volcano (Kamchatka)]. Vulkanol. i seismologiya = Volcanology and seismology, 5, pp. 51-63. (In Russ.)
  • Polyak B.G. (1965). Teplovaya moshchnost’ mezhparoksizmal’noi stadii aktivnosti Mutnovskogo vulkana [Thermal power of the interparoxysmal stage of activity of the Mutnovsky volcano]. Doklady AN SSSR [Proc. of the USSR Academy of Sciences], 162(3), pp. 643-646. (In Russ.)
  • Polyak B.G. (1966). Geotermicheskie osobennosti oblasti sovremennogo vulkanizma [Geothermal features of the area of modern volcanism]. Moscow: Nauka, 180 p. (In Russ.)
  • Polyak B.G., Bezukh B.A., Kaftan V.I. et al. (1985). Opyt nazemnoi IK-s”emki dlya otsenki temperatury i teploizlucheniya termal’nykh polei vulkana Mutnovskogo (Kamchatka) [Experience of ground-based IR imaging to assess the temperature and radiation of thermal fields of the Mutnovsky volcano (Kamchatka)]. Vulkanol. i seismologiya = Volcanology and seismology, 3, pp. 54-63. (In Russ.)
  • Rasp Kh. (2013). Vulkany i vulkanizm [Volcanoes and volcanism]. Moscow: Mir, 344 p. (In Russ.)
  • Rogozhin E.A., Sobisevich L.E., et al. (2001). Geodinamika, seysmotektonika i vulkanizm Severnogo Kavkaza [Geodynamics, seismotectonics and volcanism of the North Caucasus]. Ed.: Ak. Laverov N.P. Report. 338 p. (In Russ.)
  • Selyangin O.B. (2016). Stroenie, veshchestvo i blizpoverkhnostnye ochagi vulkanov Mutnovskii i Gorelyi (Mutnovskii geotermal’nyi raion, Kamchatka) [Structure, substance and near-surface foci of the Mutnovsky and Gorely volcanoes (Mutnovsky geothermal area, Kamchatka)]. Part I-IV. V kn.: Gornyi informatsionno-analiticheskii byulleten’ [Book: Mining information and analytical bulletin], special issue no. 31. Gornaya kniga publ., pp. 348-438. (In Russ.)
  • Stewart G. (2011). Welltest design and analysis. PenWell Corp., Tulsa, USA. 1483 pp.
  • Sutton A.J. and Elias T. (2014). One Hundred Volatile Years of Volcanic Gas Studies at the Hawaiian Volcano Observatory. In: Characteristics of Hawaiian Volcanoes. Editors: M.P. Poland, T. J. Takahashi, and C.M. Landowski., Ch.7. P.295-320. USGS Professional Paper 1801.
  • Vakin E.A., Kirsanov I.T., Kirsanova T.P. (1976). Termal’nye polya i goryachie istochniki Mutnovskogo vulkanicheskogo massiva [Thermal fields and hot springs of the Mutnovsky volcanic massif]. Gidrotermal’nye sistemy i termal’nye polya Kamchatki [Hydrothermal systems and thermal fields of Kamchatka]. Vladivostok, pp. 85-114. (In Russ.)
  • Vakin E.A., Kirsanov I.T., Pronin A.L. (1966). Aktivnaya voronka Mutnovskogo vulkana [The active funnel of the Mutnovsky volcano]. Byull. vulk. st. [Bull volc. Art.,], 40, pp. 25-35. (In Russ.)
  • Vakin E.A., Pilipenko G.F., Sugrobov V.M. (1986) Obshchaya kharakteristika Mutnovskogo mestorozhdeniya i prognoznaya otsenka resursov. Geoterm. i geokhim. issl-ya vysokotemperaturnykh gidroterm [General characteristics of the Mutnovsky field and the prediction resource estimate. Geothermal and geochemical studies of high-temperature hydrotherm]. Moscow: Nauka, pp. 6-40. (In Russ.)
  • Zelenskii M.E., Ovsyannikov A.A., Gavrilenko G.M., Senyukov S.L. (2002). Izverzhenie vulkana Mutnovskii (Kamchatka) 17 marta 2000 g. [Mutnovsky volcano eruption (Kamchatka) on March 17, 2000]. Vulkanologiya i seismologiya = Volcanology and seismology, 6, pp. 25-28. (In Russ.)
  •  
Alexander V. Muravyev
Geological Institute of the Russian Academy of Sciences
7, Pyzhevsky lane, Moscow, 119017, Russian Federation
 

For citation:

Muravyev A.V. (2018). Geothermal monitoring as a way to predict volcanic eruptions and estimate geothermal energy resources. Georesursy = Georesources, 20(4), Part 2, pp. 413-422. DOI: https://doi.org/10.18599/grs.2018.4.413-422