Pages
Download article

Matter-mineral characteristics of technogene placers – potential sources of precious metals (on the example of the Nizhneselemdzhinsky gold-bearing node of Priamurye, Russia)

I.V. Kuznetsova, P.P. Safronov, N.V. Moiseenko

Original article

DOI https://doi.org/10.18599/grs.2019.1.2-14

2-14
rus.
eng.

open access

Under a Creative Commons license

Over tens of years of mining and processing of ores and placers of gold in the world a huge amount of wastes originated in the form of spoil heaps and tailing dumps, in which the content of valuable components allow them to be considered a real additional resource of precious metals. The aim of the work was to establish the changes that took place in time in the spoil heaps of gold mining and to determine the prospects of the technogene placers as a potential source of the precious metal. The investigations were carried out with the use of the methods of the analytical raster electron microscopy and mineralogical and atomic-absorption analyses.

On the example of the Nizhneselemdzhinsky gold-bearing node of Priamurye we have done the compatative analysis of the mineral and granulometric composition of the original and developed placers. It is shown that through the technogenesis the mineral composition of the deposits changes including the process of decomposition of the lead and iron minerals with a partial reduction to a native metal.

In addition to the native gold in the technogene placers there have been found the following minerals with a high content of the precious metal: rutile, monazite, magnetite, metallic lead, galena, ilmenite, and zircon. The content of free gold in dumps is 190 mg/m3 in the average. The main amount of it (about 83%) consists of the fine gold (< 0.5 mm).

We have studied the chemical composition of the native gold and associated rocks. It has been established that the gold has a multiphase composition. The phases are for the most part the gold amalgams and have two-, three-, and four-component compositions (Au-Hg, Au-Ag-Hg, Au-Hg-Pb, Au-Ag-Hg-Pb). About 30% of gold of the technogene placers have a high standard of fineness (~980‰). Almost all native gold is in close intergrowths with the rock-forming matrix of different composition: hydroalumosilicates, oxides, and hydroxides of Fe, Mn, and Pb, highly carbonaceous and carbon-bearing formations, and so on. Under the action of the physicochemical and biochemical process in the technogene placers different transformations of the native gold take place: purification at the expense of the silver evacuation; decomposition of the minerals-concentrators of gold; precipitation of micro- and nano-gold at the geochemical barriers with the formation of the so-called “new” gold (from nanoformations to micro- and macroforms).

Through the operation of the technogene placers one should take into account the fact that the ore minerals in them have high concentrations of heavy metals and radioactive elements, and the gold has a complicated multiphase and multicomponent composition, and ¾ of it is amalgamated. The data obtained give the additional information for the elaboration of technologies for the development of the prospective gold-bearing technogene placers.

 

technogene placers, native gold, phase composition, gold amalgam, fineness of gold

 

  • Akhmetov R.M. (2013). Mercury in nature and man-made formations. Geologicheskiy sbornik, 10, pp. 222-224. (In Russ.)
  • Alpers C.N., Hunerlach M.P., May J.T., and Hothem R.L. (2005). Mercury Contamination from Historical Gold Mining in California. U.S. Geological Survey. Fact Sheet 2005-3014. Version 1.1. https://doi.org/10.3133/fs20053014
  • Chanturiya V.A., Vigdergauz V.E. (2008). Innovative technologies for processing technogenic mineral raw materials. Gornyy zhurnal, 6, pp. 71‑74. (In Russ.)
  • Craw D., Lilly K. (2016). Gold nugget morphology and geochemical environments of nugget formation, southern New Zealand. Ore Geology Reviews, 79, pp. 301-315. https://doi.org/10.1016/j.oregeorev.2016.06.001
  • Fairbrother L., Brugger J., Shapter J., Laird J.S., Southam G., Reith F. (2012). Supergene gold transformation: biogenic secondary and nano-particulate gold from arid Australia. Chemical Geology, 320-321, рр. 17-31. https://doi.org/10.1016/j.chemgeo.2012.05.025
  • Groen, J.C., Craig, J.R., Rimstidt, J.D. (1990). Gold-rich rim formation on electrum grains in placers. Can. Mineral, 28, pp. 207-228.
  • Hough R., Noble R., Reich M. (2011). Natural gold nanoparticles. Ore Geology Reviews, 42, рр. 55-61. https://doi.org/10.1016/j.oregeorev.2011.07.003
  • Kuznetsova I.V. (2011). Geology, fine and nano-sized gold in placer minerals of the Nizhneselemidzhinsky node (Priamurye). Avtoref. dis. k. geol.-min. n. [Abstract Cand. geol. and min. sci. diss.]. Krasnoyarsk: SFU, 21 p. (In Russ.)
  • Kuznetsova I.V., Moiseenko V.G. (2011). Behavior of gold and lead in the hypergenesis zone. Rudy i metally, 2, pp. 24-27. (In Russ.)
  • Kuznetsova I.V., Safronov P.P., Moiseenko N.V., Kharitonov V.I. (2015). Features of native micro- and nanogold in the hypergenesis zone (Priamurye). Estestvennyye i tekhnicheskiye nauki, 11(89), pp. 225-230. (In Russ.)
  • Kuznetsova I.V., Moiseenko N.V., Safronov P.P., Sinyakova N.I. (2017). Consanguinity of radioactive elements and gold in the minerals of the Priamurye. Estestvennyye i tekhnicheskiye nauki, 11(113), pp. 79-85. (In Russ.)
  • Lalomov A.V., Chefranov R.M., Naumov V.A., Naumova O.B., Lebarge W., Dilly R.A. (2016). Typomorphic features of placer gold of Vagran cluster (the Northern Urals) and search indicators for primary bedrock gold deposits. Ore Geology Reviews, 85, рр. 321-335.
  • Larizzatti J.H., Oliveira S.M.B., Butt C.R.M. (2008). Morphology and composition of gold in a lateritic profile, Fezenda Pison “Garimpo”, Amazon, Brazil. Journal of South American Earth Sciences, 25, рр. 259-376. https://doi.org/10.1016/j.jsames.2007.06.002
  • Lengke M.F., Fleet M.E., Southam G. (2006). Morphology of gold nanoparticles synthesized by filamentous cyanobacteria from gold(I)-thiosulfate and gold(III)-chloride complexes. Langmuir, 22, рр. 2780-2787. https://doi.org/10.1021/la052652c
  • Lengke M.F., Ravel B., Fleet M.E., Wanger G., Southam G. (2006). Mechanisms of gold bioaccumulation by filamentous cyanobacteria from gold(III)-chloride complex. Environmental Science and Technology, 40, рр. 6304-6309. https://doi.org/10.1021/es061040r
  • Marakushev S.A., Kovalevskaya A.N., Safronov P.P., Borodavkina O.N., Moiseenko V.G. (1989). Bacterial gold recrystallization. Doklady AN SSSR [Proc. of the USSR Academy of Sciences], 308(2), pp. 482-485. (In Russ.)
  • Mirzekhanova Z.G., Mirzekhanov G.S., Debelaya I.D. (2014). Tekhnogennyye obrazovaniya rossypnykh mestorozhdeniy zolota: resursno-ekologicheskiye aspekty otrabotki [Technogenic formations of alluvial gold deposits: resource and environmental aspects of mining]. Khabarovsk: DVO RAN, 297 p. (In Russ.)
  • Moiseenko V.G. (2007). Ot atomov zolota cherez klastery, nano- i mikroskopicheskiye chastitsy do samorodkov blagorodnogo metalla [From gold atoms through clusters, nano- and microscopic particles to originals of noble metal]. Blagoveshchensk: DVO RAN, Amurskoye otdeleniye RMO, 187 p. (In Russ.)
  • Moiseenko V.G., Kuznetsova I.V. (2010). The role of nanoparticles of gold, silver and lead in the formation of noble metals deposits. Doklady Earth Sciences, 430(3), pp. 377-381. (In Russ.)
  • Moiseenko V.G., Moiseyenko N.V., Safronov P.P. (2010). Nanoscale gold in the ores of the Pokrovsky deposit. Doklady Earth Sciences, 435(4), p. 527-530. (In Russ.)
  • Moiseenko V.G., Moiseenko N.V. (2012). The concentration of gold nanominerals in the process of ore formation in the Pokrovsky deposit. Doklady Earth Sciences, 444(1), pp. 73-76. (In Russ.) https://doi.org/10.1134/S1028334X12050054
  • Moiseenko V.G., Kuznetsova I.V. (2014). Nanogold in ancient limestones and dolomites of the Octyabrskoe ore field (Priamurye). Doklady Earth Sciences, 456(4), pp. 692-695. (In Russ.) https://doi.org/10.1134/S1028334X1406018X
  • Moiseenko V.G., Kuznetsova I.V. (2017). The relationship of uranium, gold and carbon in ore formation. Mezhdunarodnyy zhurnal gumanitarnykh i estestvennykh nauk, 12, pp. 40-47. (In Russ.)
  • Myagkaya I.N., Lazareva, E.V., Gustaytis, M.A., Zhmodik S.M. (2016). Gold and Silver in a system of sulfide tailings. Part 2: Reprecipitation on natural peat. Journal of Geochemical Exploration. 165, 8-22. https://doi.org/10.1016/j.gexplo.2016.01.016
  • Naumov V.A., Naumova O.B. (2010). On the directed formation of deposits on the example of man-made gold placers. Izvestiya Tul’skogo gosudarstvennogo universiteta. Estestvennye nauki, 1, pp. 282-287. (In Russ.)
  • Naumov V.A., Naumova O.B. (2013). Reorganization of gold in man-made placers. Sovremennye problemy nauki i obrazovaniya, 5, pp. 531-532. (In Russ.)
  • Neronskiy G.I., Dobraya V.T. (1975). Peculiarities of the composition of gold from placers of the Nizhneselemidzhinsky region. Amursky kraeved, pp. 86-100. (In Russ.)
  • Petrovskaya N.V. (1973). Samorodnoe zoloto [Native gold]. Moscow: Nauka, 348 p. (In Russ.)
  • Rea M.A., Zammit C.M., Reith F. (2016). Bacterial biofilms on gold grains-implications for geomicrobial transformations of gold. FEMS Microbiology Ecology, 92(6), fiw082. https://doi.org/10.1093/femsec/fiw082
  • Reith F., Fairbrother L., Nolze G., Wilhelm O., Clode P.L., Gregg A., et al. (2010). Nanoparticle factories: biofilms hold the key to gold dispersion and nugget formation. Geology, 38, рр. 843-846. https://doi.org/10.1130/G31052.1
  • Reith F., Stewart L., Wakelin S.A. (2012). Supergene gold transformation: Secondary and nano-particulate gold from southern New Zealand. Chemical Geology, 320, рр. 32-45. https://doi.org/10.1016/j.chemgeo.2012.05.021
  • Safronov P.P., Shkolnik E.L., Neronskiy G.I. (1998). Unusual structures of gold from the placer of the Oktyabrskoe gold-bearing node of the Amur Region. Mat. III-go regional’nogo soveshchaniya: Mineralogiya Urala [Proc. III Regional Sem.: Mineralogy of the Urals]. Vol. 2. Miass, pp. 109-111. (In Russ.)
  • Safronov P.P., Moiseenko N.V., Moiseyenko V.G. (2011). Nanoscale native gold in minerals of the Pioneer deposit (Priamurye) according to electron microscopic studies. Mat. XVII Ross. simp. po rastrovoy elektronnoy mikroskopii i analiticheskim metodam issledovaniya tvërdykh tel (REM-2011) [Proc. XVII Russ. Simp. on scanning electronic microscopy and analytical methods in studying solids]. Chernogolovka, pp. 206 (In Russ.)
  • Safronov P.P., Kuznetsova I.V. (2016). Nanogold in rocks associated with native gold in the man-made placers of the Priemurye. Voprosy geologii i kompleksnogo osvoyeniya prirodnykh resursov Vostochnoy Azii: Mat. IV-y Vseross. nauch. konf. [Proc. IV All-Russ. Conf.: Problems of geology and integrated development of natural resources of the Eastern Asia]. Blagoveshchensk: ITiG DVO RAN. pp. 112-115. (In Russ.)
  • Safronov P.P., Kuznetsova I.V. (2017). Special features of composition of native gold from technogene placers on the example of the Nizhneselemdzhinsky gold-bearing node (Priamurye). Izvestiya Tomskogo politekhnicheskogo universiteta. Inzhiniring georesursov = Bulletin of the Tomsk Polytechnic University. Geo Аssets Engineering, 328(2), pp. 46-58. (In Russ.)
  • Saryg-ool B.Yu., Myagkaya I.N., Kirichenko I.S. et al. (2017). Redistribution of elements between wastes and organic-bearing material in the dispersion train of gold-bearing sulfide tailings. Part I. Geochemistry and mineralogy. Science of the Total Environment, 581-582, рр. 460-471. https://doi.org/10.1016/j.scitotenv.2016.12.154
  • Shilo N.A. (2000). Ucheniye o rossypyakh [Teaching about placers]. Moscow: Izd. Akademii gornykh nauk, 632 p. (In Russ.)
  • Shuster J., Southam G. (2015). The in-vitro «growth» of gold grains. Geology, 43(1), рp. 79-82. https://doi.org/10.1130/G36241.1
  • Shuster J., Lengke M., Marquez-Zavalia M.F., Southam G. (2016). Floating gold grains and nanophase particles produced from the biogeochemical weathering of a gold-bearing ore. Economic Geology, 111, рр. 1485-1494. https://doi.org/10.2113/econgeo.111.6.1485
  • Shuster J., Reith F., John G.C., John E.P., Southam M.P.G. (2017). Secondary gold structures: Relics of past biogeochemical transformations and implications for colloidal gold dispersion in subtropical environments. Chemical Geology, 450(5), рр. 154-164. https://doi.org/10.1016/j.chemgeo.2016.12.027
  • Southam G., Lengke M.F., Fairbrother L., Reith F. (2009). The biogeochemistry of gold. Еlements, 5, рр. 303-307. https://doi.org/10.2113/gselements.5.5.303
  • Sobolev I.S., Lobov E.I., Aleksandrov A.N. et al. (1997). Manual on the assessment of the impact of mining on the environment and ecological justification of the economic activities of mining enterprises. Ekologicheskaya ekspertiza, 6, pp. 2-70. (In Russ.)
  • Tarasenko I.A., Kharitonova N.A., Ovodova E.V., Zin’kov A.V., Korzun A.V. (2017). Transformation of mineralogical and geochemical composition of tails and its influence on the high mineralization water origination (Primorye region, Russia). Tikhookeanskaya geologiya, 36(2), pp. 106-118. (In Russ.)
  • Tarasenko I.A., Kharitonova N.A., Zin’kov A.V., Ovodova E.V., Korzun A.V. (2017a). Tailing Dumps at the Krasnorechenskaya Concentration Mill (Primorskii krai, Russia): Geochemistry and Mineralogy. Moscow University Geology Bulletin, 72(3). pp. 192-199. https://doi.org/10.3103/S014587521703005X
  • Tarasenko I.А., Zinkov A.V., Ovodova E.V., Petukhov V.I, Solyanik I.V. (2017b). Geochemistry and mineralogy of old concentration tailings (Dalnegorsky ore district, Primorsky krai, Russia). IOP Conf. Series: Earth and Environmental Science (EES), 87, 042023. DOI 10.1088/1755-1315/87/4/042023
  • Telmer K.Н., Veiga M.M. (2008). World emissions of mercury from small scale artisanal gold mining and the knowledge gaps about them. In M. Pirrone and R. Mason (Eds.), Mercury fate and transport in the global atmosphere: Measurements, models and policy implications. Geneva: UNEP, рp. 96-129.
  • Yesares L., Saez R., Nieto J.M., Almodovar G.R., Cooper S. (2014). Supergene enrichment of precious metals by natural amalgamation in the Las Cruces weathering profile (Iberian Pyrite Belt, SW Spain). Ore Geology Review, 58, рр. 14-26. https://doi.org/10.1016/j.oregeorev.2013.10.004
  •  

Inna V. Kuznetsova
Institute of Geology and Nature Management of the Far Eastern Branch of the Russian Academy of Sciences
1, Relochny Lane, Blagoveshchensk, Amur region, 675000, Russian Federation

Petr P. Safronov
Institute of Geology and Nature Management of the Far Eastern Branch of the Russian Academy of Sciences
159, 100-Letiya Ave., Vladivostok, 690022, Russian Federation

Natalya V. Moiseenko
Institute of Geology and Nature Management of the Far Eastern Branch of the Russian Academy of Sciences
1, Relochny Lane, Blagoveshchensk, Amur region, 675000, Russian Federation

 

For citation:

Kuznetsova I.V., Safronov P.P., Moiseenko N.V. (2019). Matter-mineral characteristics of technogene placers – potential sources of precious metals (on the example of the Nizhneselemdzhinsky gold-bearing node of Priamurye, Russia). Georesursy = Georesources, 21(1), pp. 2-14. DOI: https://doi.org/10.18599/grs.2019.2.3-14