Pages
Download article

Evidence of carbonate rocks formation on geochemical barriers in black shale on the example of the Bazhenov formation of the Western Siberia

V.G. Eder, A.G. Zamiraylova, G.A. Kalmykov

Original article

DOI https:// doi.org/10.18599/grs.2019.2.143-152

143-152
rus.

open access

Under a Creative Commons license

A comprehensive lithological-geochemical study of rocks of the Upper Jurassic-Lower Cretaceous blackshale Bazhenov formation showed that most of its carbonatized interlayers to the boundaries of packs of different composition differing in carbonate content, degree of siliceousness or clayiness. At the same time, at the boundaries of the Bazhenov formation with host sediments, where carbonate rocks are often found in association with “pyrite” low carbon rocks according to geochemical parameters (degree of pyritization, Mn/Al, Ua), a change in the redox regime is recorded. In the most studied stratum at intervals of occurrence of carbonates, a change in the redox regime is not observed. It is assumed that they existed alkaline barriers, as evidenced by the change in the composition of rocks. The following geochemical barriers (bottom-up along the section) were identified in the Bazhenov formation and its transition to the enclosing sediments, on which evidence of localization of carbonate minerals was found: redox barrier 1 (lower BF boundary), alkaline barrier 1 (border of mixes of kerogen - clay-siliceous low-carbonate and silicites), alkaline barrier 2 (border of kerogen-clay-siliceous low-carbonate and siliceous-carbonate “coccolith” packs); Redox barrier 2 (the upper limit of the BF).

 

Bazhenov formation, Upper Jurassic, carbonate rock, geochemical barriers

 

  • Alekseenko V.A., Alekseenko L.P. (2003). Geokhimicheskie bar’ery [Geochemical barriers]. Moscow: Logos, 143 p. (In Russ.)
  • Balushkina N.S., Yurchenko A.Yu., Kalmykov G.A., Korobova N.I., Petrakova N.N., Bugaev I.A. (2016). Formation conditions and oil saturation of carbonate reservoirs of the Bazhenov and Abalaki suites. Neftyanoe khozyaistvo = Oil industry, 1, pp. 32-35. (In Russ.)
  • Bausch W., Hoefs J. (1972). Isotopic composition of dolomites and calcites from the Upper Jurassic of Southern Germany. Contrib. Mineral Petrology, 37(2), pp. 121-130.
  • Berner R. (1984). Sedimentary pyrite formation: an update. Geochemica et Cosmochimica Acta, 47, pp. 605-615.
  • Berner R., Raiswell R. (1983). Burial of organic carbon and pyrite sulfur in sediments over Phanerozoic time: a new theory. Geochemica et Cosmochimica Acta, 47, pp. 855-862.
  • Eder V.G., Fomin A.N., Zamiraylova A.G. (2017). Study of Pyrite in Upper Jurassic-Lower Cretaceous Black Shales of the Bazhenov Formation in the West-Siberian Sedimentary Basin, its Distribution and Diagenetic Migration Patterns. 17th Int. Sci. GeoConference SGEM 2017. Geology, Mineral processing: Conference Proceedings, 17(11), pp. 1059-1066.
  • Eder V.G., Yurchenko A.Yu., Balushkina N.S., Kostyreva E.A., Kozlova E.V., Zamirailova A.G. (2018). Carbonate rocks of the black shale Bazhenov Formation of the Khantei Hemianteclise area, Western Siberia. Interekspo GEO-Sibir: Mezhdunar. nauch. konf. «Nedropol’zovanie. Gornoe delo. Napravleniya i tekhnologii poiska, razvedki i razrabotki mestorozhdenii poleznykh iskopaemykh. Ekonomika. Geoekologiya» [Proc. Int. Sci. Conf.: Interexpo GEO-Siberia: Subsoil use. Mining. Directions and technologies of prospecting, exploration and development of mineral deposits. Economy. Geoecology], vol. 1, pp. 93-101. (In Russ.)
  • Eder V.G., Zamirailova A.G., Yan P.A. (2017). Regularities of the distribution of siliceous rocks and the “coccolith” pack of the Bazhenov suite. Geologiya i geofizika = Russian Geology and Geophysics, 58(3-4), pp. 511-521. (In Russ.)
  • Farr M.R. (1992). Geochemical variation of dolomite cement within the Cambrian Bonneterre Formation, Missouri: Evidence for fluid mixing. J. Sed. Petrol, 62(4), pp. 636-651.
  • Gulyaeva L.A. (1953). Precipitation of hydrogen sulfide basins of the geological past. Doklady AN SSSR, XCII(5), pp. 1019-1022. (In Russ.)
  • Gurari F.G., Vaits E.Ya., Moskvin V.I. et al. (1988). Formation conditions and methods for the search for oil deposits in the mudstones of the Bazhenov formation. Ed. Gurari F.G. Moscow: Nedra, 199 p. (In Russ.)
  • Hofmann P., Ricken W., Schwark L. (1999). Leythaeuser coupled oceanic effects of climatic cycles from late Albian deep-sea sections of the North Atlantic. In: Evolution of the Cretaceous Ocean Climate System. Geological Society of America, Special Paper 332, pp. 143-160.
  • Kholodov V.N. (2006). Geokhimiya osadochnogo protsessa [Geochemistry of the sedimentary process]. Moscow: GEOS, iss. 574, 608 p. (In Russ.)
  • Kontorovich A.E., Yan P.A., Zamirailova A.G., Kostyreva E.A., Eder V.G. (2016). Classification of rocks of the Bazhenov formation. Geologiya i geofizika = Russian Geology and Geophysics, 11, pp. 2034-2043. (In Russ.)
  • Korobov A.D., Korobova L.A., Morozov V.P., Zagranovskaya D.E., Zakharova O.A. (2017). Authigenic dolomite of high-bituminous Bazhenov sediments is an indicator of the final stage of hydrocarbon generation. Neftyanoe khozyaistvo = Oil industry, 4, pp. 41-43. (In Russ.)
  • Krumbein W.C., Garrels R.M. (1952). Origin and classification of chemical sediments in terms of pH and oxidation – reduction potentials. Journ. Geol., 60, pp. 1-33.
  • Leventhal J.S. (1995). Carbon-sulfur plots to show diagenetic sulfidation in sediments. Geochemica et Cosmochimica Acta, 59(6), pp. 1207-1211.
  • Maastuda H., Iijima A. (1989). Occurrence and genesis of Permian dolostone in the Kuzuu area, Tochigi Preference, Central Japan. J.Fac.Sci. Univ. Tokyo, Sec.2, 22(1), pp.-89-119.
  • Makhnach A.A. (1989). Katagenez i podzemnye vody [Catagenesis and groundwater]. Minsk: “Nauka i tekhnika” Publ., 335 p.
  • Mormyshev V.V., Zav’yalets A.N. (1985). Structure diagram and justification of the reservoir development mode of the Yu0 Salym field. Features of the calculation of oil reserves in Bazhenov sediments of Western Siberia. Tyumen: SibNIINP. (In Russ.)
  • Nemova V.D. (2012). Conditions reservoir formation in deposits of the Bazhenov strata within the junction of the Krasnoleninsky arch and the Frolovsky megadepression. Neftegazovaya geologiya i praktika. Teoriya i praktika, 7(2), pp. 1-14. (In Russ.)
  • Nemova V.D., Koloskov V.N., Pokrovskii B.G. (2011). Formation of carbonatized reservoirs in clay-siliceous sediments of the Bazhenov horizon in the West of the Ob basin. Razvedka i okhrana nedr, 12, pp. 31-35. (In Russ.)
  • Nemova V.D., Panchenko I.V. (2017). The productivity factors of the Bazhenov formation in Frolov megadepression. Neftegazovaya geologiya i praktika. Teoriya i praktika, 12(4), pp. 1-16. (In Russ.)
  • Nesterov I.I. (1979). New type of oil and gas reservoir. Geologiya nefti i gaza = Geology of oil and gas, 10, pp. 26-29. (In Russ.)
  • Perel’man A.I. (1961). Geokhimiya landshafta [Geochemistry of the landscape]. Moscow: “Geografgiz” Publ., 392 p. (In Russ.)
  • Perel’man A.I. (1989). Geokhimiya [Geochemistry]. Moscow: “Vysshaya shkola”, 528 p. (In Russ.)
  • Pratt L.M., Force E.R., Pomerol B. (1991). Coupled manganese and carbon-isotopic events in marine carbonates at the Cenomanian-Turonian boundary. J. Sediment. Petrol., 61, pp. 370-383.
  • Predtechenskaya E.A., Krol’ L.A., Gurari F.G., Sap’yanik V.V., Perozio G.N., Malyushko L.D. (2006).On the genesis of carbonates in the composition of the Bazhenov Formation of the central and south-eastern regions of the West Siberian Plate. Litosfera = Lithosphere, 4, pp. 131-148. (In Russ.)
  • Raiswell R., Buckley F., Berner R.A., Anderson T.F. (1988). Degree of pyritization of iron as a paleoenvironmental indicator of bottom-water oxygenation. J. Sediment. Petrol., 58, pp. 812-819.
  • Rozen O.M., Abbyasov A.A., Migdisov A.A., Yaroshevskii A.A. (2000). The MINLITH program for calculating the mineral composition of sedimentary rocks: the reliability of the results applied to deposits of ancient platforms. Geokhimiya = Geochemistry, 4, pp. 431-444. (In Russ.)
  • Shurygin B.N., Dzyuba O.S. (2015). The boundaries of the Jurassic and Cretaceous in the north of Siberia and the boreal-tetic correlation of the border strata. Geologiya i geofizika = Russian Geology and Geophysics, 56(4), pp. 830-844.
  • (In Russ.) Strakhov N.M. (1960). Osnovy teorii litogeneza [Fundamentals of the theory of lithogenesis]. V. II. Moscow: Academy of Sciences of the USSR, 574 p. (In Russ.)
  • Strakhov N.M. (1976). Problemy geokhimii sovremennogo okeanskogo litogeneza [Problems of geochemistry of modern ocean lithogenesis]. Moscow: Nauka, 299 p. (In Russ.)
  • Wignall P.B, Myers K.J. (1988). Interpreting the benthic oxygen levels in mudrocks: A new approach. Geology, 16, pp. 452-455.
  • Yudovich Ya.E., Ketris M.P. (2011). Geokhimicheskie indikatory litogeneza. Litologicheskaya geokhimiya [Geochemical indicators of lithogenesis. Lithological geochemistry]. Moscow: Geoprint, 740 p. (In Russ.)
  • Yurchenko A.Yu. (2017). Formation of secondary carbonate rocks of the Upper Ababalak-Bazhenov strata of the Salym, Pravdinsk and Malobalyk oil fields of Western Siberia. Avtoref. dis. kandidata geol.-min. nauk [Author. dis. candidate geol.-min. sciences]. Moscow: MSU, 25 p. (In Russ.)
  • Zubkov M.Yu. (2016). Regional and local oil-bearing forecasts of the Bazhenov and Abalak Formations (Western Siberia). Gornye vedomosti, 3-4, pp. 46-68. (In Russ.)
  •  
Vika G. Eder
Trofimuk Institute of Petroleum Geology and Geophysics of the Siberian Branch of the Russian Academy of Sciences
3, Ak. Koptyug ave., Novosibirsk, 630090, Russian Federation
 
Alvina G. Zamiraylova
Trofimuk Institute of Petroleum Geology and Geophysics of the Siberian Branch of the Russian Academy of Sciences
3, Ak. Koptyug ave., Novosibirsk, 630090, Russian Federation
 
Georgii A. Kalmykov
Lomonosov Moscow State University
1, Leninskie gory, Moscow, 119234, Russian Federation
 

For citation:

Eder V.G., Zamiraylova A.G., Kalmykov G.A. (2019). Evidence of carbonate rocks formation on geochemical barriers in black shale on the example of the Bazhenov formation of the Western Siberia. Georesursy = Georesources, 21(2), pp. 143-152. DOI: https:// doi.org/10.18599/grs.2019.2.143-152