Pages
Download article

Aquathermolysis of heavy oil in the presence of bimetallic catalyst that form in-situ from the mixture of oil-soluble iron and cobalt precursors

E.R. Baygildin, S.A. Sitnov, A.V. Vakhin, A.V. Sharifullin, M.I. Amerkhanov, E.I. Garifullina

Original article

DOI https://doi.org/10.18599/grs.2019.3.62-67

62-67
rus.
eng.

open access

Under a Creative Commons license

The design of highly efficient catalysts of cracking reactions for intensification of thermal enhanced oil recovery technologies is a relevant task. Moreover, the cost-effective industrial synthesis of such catalysts is very important. In this paper, we discuss the efficiency of bimetallic catalyst, which forms in-situ from the mixture of oil-soluble iron and cobalt precursors, on the processes of upgrading heavy oil in the reservoir of Tatarstan Republic (Russia). A simulation of aquathermolysis was carried out in a high-pressure reactor – autoclave at 150-250оС. The treatment time varied from 6 to 24 hours and the share of catalyst and hydrogen donor was 2 %wt. each. The phase composition of the active form of binary catalyst was estimated from the result of X-ray diffraction measurement. It is characterized by the presence of individual (Fe3O4 and Fe2O3) and mixed oxides with ideal stoichiometry – СоFe2O4. The formation of cobalt sulfide (CoS2) was observed, which indicates the destruction of C-S bonds in high-molecular components of oil. According to the results of SARA-analysis and rheology behavior, the catalyst intensifies destructive processes of resinous compounds (their content reduces more than 45%). This provides an increase in the content of saturated hydrocarbons by 16% and redistribution of aromatic fragments in hydrocarbons with hybrid structure. Thus, the reduction of dynamic viscosity by 32% was succeeded.    

 

Heavy oil, bimetallic catalysts, oil soluble precursors, steam injection, in-situ upgrading, active form

 

  • Altunina L.K., Kuvshinov V.A. (2007). Physicochemical methods for enhancing oil recovery from oil fields. Russian Chemical Reviews, 76(10), pp. 1034-1052.
  • Chen Y., Yang C., Wang Y. (2010). Gemini Catalyst for Catalytic Aquathermolysis of Heavy Oil. Journal of Analytical and Applied Pyrolysis, 89, pp. 159-165. DOI: 10.1016/j.jaap.2010.07.005
  • Desouky S., Alsabagh A., Betiha M., Badawi A., Ghanem A., Khalil S. (2013). Catalytic Aquathermolysis of Egyptian Heavy Crude Oil. International Journal of Chemical, Nuclear, Metallurgical and Materials Engineering, 7(8), pp. 286-291.
  • Feoktistov D.A., Kayukova G.P., Vakhin A.V., Sitnov S.A. (2018). Catalytic aquathermolysis of high-viscosity oil using iron, cobalt, and copper tallates. Chemistry and Technology of Fuels and Oils, 53(6), pp. 905-912. DOI: 10.1007/s10553-018-0880-4
  • Ivanova А.G., Vakhin А.V., Voronina Е.V., Pyataev А.V., Nurgaliev D.К., Sitnov S.А. (2017). Mössbauer study of products of the thermocatalytic treatment of kerogen-containing rocks. Bulletin of the Russian Academy of Sciences. Physics, 81(7), pp. 817-821. DOI: 10.3103/S1062873817070139
  • Kadiev, Kh.M., Oknina, N.V., Gyul’Maliev, A.M., Gagarin, S.G., Kadieva, M.Kh., Batov, A.E., Khadzhiev, S.N. (2015). On the mechanism and main features of hydroconversion of the organic matter of oil sludge in the presence of nanosized catalysts. Petroleum Chemistry, 55(7), pp. 563-570. DOI: 10.1134/S0965544115070051
  • Kayukova G.P., Foss L.E., Feoktistov D.A., Vakhin A.V., Petrukhina N.N., Romanov G.V. (2017). Transformations of Hydrocarbons of Ashalhinskoe Heavy Oil under Catalytic Aquathermolysis Conditions. Petroleum Chemistry, 57(8), pp. 657-665. DOI: 10.1134/S0965544117050061
  • Kayukova, G.P., Feoktistov, D.A., Vakhin, A.V., Kosachev, I.P., Romanov, G.V., Mikhailova, A.N., Khisamov, R.S. (2017). Conversion of heavy oil in carbonic natural environment using catalyst – Iron disulfide. Neftyanoe Khozyaystvo = Oil Industry, 4, pp. 100-102. DOI: 10.24887/0028-2448-2017-4-100-102
  • Kondoh H., Tanaka K., Nakasaka Y., Tago T., Masuda T., (2016). Catalytic cracking of heavy oil over TiO2-ZrO2 catalysts under superheated steam conditions. Fuel, 167, pp. 288-294. DOI: 10.1016/j.fuel.2015.11.075
  • Maity S.K., Ancheyta J., Marroquin G., (2010). Catalytic Aquathermolysis Used for Viscosity Reduction of Heavy Crude Oils. Energy & Fuels, 24(5), pp. 2809-2816. DOI: 10.1021/ef100230k
  • Panariti N., Del Bianco A., Del Piero G. Marchionna M. (2000). Petroleum Residue Upgrading with Dispersed Catalysts. Part 1. Catalysts Activity and Selectivity. Applied Catalysis A: General, 204(2), pp. 203-213. DOI: 10.1016/S0926-860X(00)00531-7
  • Randhawa B., Kaur R., Sweety K. (1997). Mössbauer study on thermal decomposition of some hydroxy iron (III) carboxylates. Journal. Radioanal. Nucl. Che., 220(2), pp. 271-273.
  • Salih I.Sh.S., Mukhamatdinov I.I., Garifullina E.I., Vakhin A.V. (2018). Study of Fractional Composition of Asphaltenes in Hydrocarbon Material. Chemistry and Technology of Fuels and Oils, 54(1), pp. 44-50. DOI: 10.1007/s10553-018-0896-9
  • Sharifullin A.V., Baibekova L.B., Farrakhova L.I., Suleimanov A.T., Sharifullin V.N., Khamidullin R.F. (2007). Heat of solution of asphaltene-resin-wax deposits in straight-run petroleum fractions. Petroleum Chemistry, 47(2), pp. 120-124. DOI: 10.1134/S0965544107020077
  • Shuwa S.M., Al-Hajri R.S., Mohsenzadeh A., Al-Waheibi Y.M., Jibril B.Y. (2016). Heavy crude oil recovery enhancement and in-situ upgrading during steam injection using Ni-Co-Mo dispersed catalyst. Society of Petroleum Engineers – SPE EOR Conference at Oil and Gas West Asia, OGWA
  • Sitnov S.A., Mukhamatdinov I.I., Vakhin A. V., Ivanova A.G., Voronina E.V. (2018). Composition of aquathermolysis catalysts forming in situ from oil-soluble catalyst precursor mixtures. Journal of Petroleum Science and Engineering, 169, pp. 44-50. DOI: 10.1016/j.petrol.2018.05.050
  • Sitnov S.A., Petrovnina M.S., Feoktistov D.A., Isakov D.R., Nourgaliev D.K., Amerkhanov M.I. (2016). Intensification of thermal steam methods of production of heavy oil using a catalyst based on cobalt. Neftyanoe Khozyaystvo = Oil Industry, 11, рр. 106-108
  • Vakhin A.V., Sitnov S.A., Mukhamatdinov I.I., Onishchenko Y.V., Feoktistov D.A. (2017). Aquathermolysis of High-Viscosity Oil in the Presence of an Oil-Soluble Iron-Based Catalyst. Chemistry and Technology of Fuels and Oils, 53(5), pp. 666-674. DOI: 10.1007/s10553-017-0848-9
  • Wang Y.Q., Chen Y.L., He J., Li P., Yang C. (2010). Mechanism of catalytic aquathermolysis: influences on heavy oil by two types of efficient catalytic ions: Fe3+ and Mo6+. Energy Fuels, 24(3), pp. 1502-1510. DOI: 10.1021/ef901339k
  • Weissman J.G., Kessler R.V. (1996). Downhole heavy crude oil hydroprocessing. Applied Catalysis A: General, 140 (1), pp. 1-16. DOI: 10.1016/0926-860X(96)00003-8
  • Yusuf A., Al-Hajri R.S., Al-Waheibi Y.M., Jibril B.Y. (2016a). Upgrading of Omani heavy oil with bimetallic amphiphilic catalysts. Journal of the Taiwan Institute of Chemical Engineers, 67, pp. 45-53. DOI: 10.1016/j.jtice.2016.07.020
  • Yusuf A., Al-Hajri R.S., Al-Waheibi Y.M., Jibril B.Y. (2016b). In-situ upgrading of Omani heavy oil with catalyst and hydrogen donor. Journal of Analytical and Applied Pyrolysis, 121, pp. 102-112. DOI: 10.1016/j.jaap.2016.07.010
  • Zhang Z., Barrufet M.A., Lane R.H., Mamora D.D. (2012). Experimental Study of In-Situ Upgrading for Heavy Oil Using Hydrogen Donors and Catalyst Under Steam Injection Condition. SPE Heavy Oil Conference Canada, 2, pp. 1610-1616.
  • Zhao Y., Liu J., Ding C., Wang C., Zhai X., Li, J., Jin H. (2018). The synthesis of FeCoS2 and an insight into its physicochemical performance. CrystEngComm, 20(15), pp. 2175-2182.
  •  

Emil R. Baygildin
Kazan (Volga Region) Federal University
4/5 Kremlevskaya st., Kazan, 420008, Russian Federation
E-mail: emil.bajgildin@gmail.com

Sergey A. Sitnov
Kazan (Volga Region) Federal University
4/5 Kremlevskaya st., Kazan, 420008, Russian Federation

Alexey V. Vakhin
Kazan (Volga Region) Federal University
4/5 Kremlevskaya st., Kazan, 420008, Russian Federation

Andrey V. Sharifullin
Oil and Gas Refining, Kazan National Research Technological University
68 Karl Marks st., Kazan, 420015, Russian Federation

Marat I. Amerkhanov
Tatneft PJSC
82 Marjani st.,Almetyevsk, 423450, Russian Federation

Elvira I. Garifullina
Kazan (Volga Region) Federal University
4/5 Kremlevskaya st., Kazan, 420008, Russian Federation

 

For citation:

Baygildin E.R., Sitnov S.A., Vakhin A.V., Sharifullin A.V., Amerkhanov M.I., Garifullina E.I. (2019). Aquathermolysis of heavy oil in the presence of bimetallic catalyst that form in-situ from the mixture of oil-soluble iron and cobalt precursors. Georesursy = Georesources, 21(3), pp. 62-67. DOI: https://doi.org/10.18599/grs.2019.3.62-67