МЕТОДИКА ОПРЕДЕЛЕНИЯ ПРИЧИНЫ ОБВОДНЕНИЯ СКВАЖИН

Основные объекты эксплуатации крупных месторождений Западной Сибири, находятся на завершающей стадии разработки, которая характеризуется высокой обводненностью продукции добывающих скважин, низким темпом отбора нефти. Основной причиной обводнения добывающих скважин является прорыв воды из нагнетательных скважин и конусообразование в залежах с подошвенной водой. В работе приведена методика определения причин обводнения скважин, позволяющая рассчитать при каких режимах работы скважин возможно предупредить преждевременный прорыв подошвенной воды и продлить безводный период эксплуатации.

Ключевые слова: конусообразование, подошвенная вода, добывающие и нагнетательные скважины, предельный дебит.

При эксплуатации нефтяных скважин с подошвенной водой проявляется тенденция к деформированию поверхности раздела двух фаз, которая принимает колокообразный вид, образуя конуса воды. При некоторых установившихся условиях отбора деформированные поверхности раздела находятся в равновесии (Рис. 1 а) и не оказывают существенного влияния на приток добываемого флюида в скважине.

Равновесие характеризуется предельным дебитом, превышение которого приводит к прорыву воды в скважину (Рис. 1 б). В случае если дебит скважины не превышает предельного значения, то прорыв воды произойдет лишь при достижении вершиной конуса интервала переформации, за счет общего поднятия ВНК. Величина предельного дебита зависит от физических свойств пласта, жидкостей и относительного вскрытия продуктивной части пласта. В пластах с малой проницаемостью вдоль на пластования реализация предельных дебитов ввиду их малости экономически не выгодна. Также не выгодна эксплуатация скважин и с максимально возможным дебитом, так как вода быстро прорывается в скважину и начнется совместный приток нефти и воды.

Скважина, остановленная по причине высокой обводненности, может быть запущена повторно с прежними дебитами по нефти. Это объясняет тем, что после остановки скважины, через некоторое время, вследствие перепада давления и силы тяжести, конус воды опускается не изменяя остаточной нефтенасыщенности и области дренирования скважины (Телков и др., 1993). Для этого скважина должна соответствовать некоторым критериям: — наличие достаточного количества извлекаемых запасов по блоку; — компенсация по блоку не более 130%; — промысловый опыт показывает, что в «переоцененных» блоках скважины, запущенные из бездеятельности не выходят на нефть; — нарушенна статистичность конуса, что может говорить об опережающей роли конуса в обводнение скважины, по отношению к нагнетательным скважинам; — обводнение скважины по причине подъема конуса воды.

Последние два критерия наиболее важны, так как если запустить скважину, обводненность которой была следствием прорыва вод из нагнетательных скважин, мы получим примерно тот же дебит и ту же обводненность что и перед остановкой.

Таким образом, задача сводится к разработке методики определения причин обводнения скважин. Для реализации поставленной задачи необходимо провести проверку на соответствие указанным выше критериям.

Задача решена на конкретном примере. Было выбрано три скважины, остановленные ранее по причине высокой обводненности. Скважины относятся к Южной части Федеровского месторождения, разделенной на 5 блоков.

Скважина №11хх. Относится к 1 блоку, который разрабатывается с 1983 года. Уплотняющие скважины бурились в 1995 году, обводненность в среднем составила 86%. Остаточные извлекаемые запасы составляют 23%. Блок характеризуется плохими коллекторскими свойствами.

ляют 25%. У блока плохие коллекторские свойства.
В среднем текущая компенсация отбора жидкости составляет 122%, а накопленная 119,7%.
На основании данных представленных выше, можно сделать вывод, что критериям извлекаемых запасов и компенсации отбора жидкости, соответствуют все три скважины.
Расчеты, по которым будет определено соответствие двум последним критериям, представлены ниже (Чарный, 1963).
Предельный безводный дебит нефтяной скважины определяется по формуле:
\[Q_1 = Q_0 q\left(\rho_0 \tilde{h}\right), \]
(1)
\[Q_0 = \frac{2\pi Kh_0}{\mu} \Delta \rho, \]
(2)
\[\Delta \rho = \rho_B - \rho_H, \]
(3)
где \(q(\rho_0 \tilde{h})\) – безразмерный предельный дебит, определяемый по графику (Рис. 2); \(Q_0\) – потенциальный дебит; \(K\) – проницаемость; \(\mu\) – вязкость; \(\rho_0\), \(\rho_B\), \(\rho_H\) – плотность воды, нефти; \(h_0\) – мощность ненасыщенной части пласта; \(\tilde{h}\) – отношение вскрытой нефтяной толщи, к общей толще нефтеносности; \(\rho_0\) – параметр размещения скважин.
Параметр размещения определяется по формуле:
\[\rho_0 = \frac{R_0}{\chi h_0}, \]
где \(R_0\) – контур питания; \(\chi\) – коэффициент анизотропии; \(h_0\) – мощность нефтенасыщенной части пласта.
Для выбранных скважин по описанной методике определен предельный безводный дебит, при котором нарушается статичность конуса и время, за которое вода прорывается к скважине.
Определим безводный дебит для скважины 11хх по формуле (1), для этого сначала по формуле (2) определим \(Q_0\):
\[Q_0 = \frac{2 \times 3.14 \times 0.250 \times 10^{-6} \times 10}{1.14 \times 10^3} \times 249 \times 9.8 = \]
\[= 6.28 \times 0.000250 \times 10^3 \times 2440.2 = 27 \text{ м}^3 / \text{сут} . \]
далее по формуле (4) определяем параметр размещения скважины
\[\rho_0 = \frac{250}{4 \times 10} = 6.2 . \]
далее с помощью графика (Рис. 2) определяем безразмерный безводный дебит
\[q(\rho_0 \tilde{h}) = 2 . \]
Полученные данные подставляем в формулу (1)
\[Q_1 = 27 \times 2 = 54 \text{ м}^3 / \text{сут} . \]
Определим безводный дебит для скважины 12хх, для этого по формуле (2) определим \(Q_0\):
\[Q_0 = \frac{2 \times 3.14 \times 0.260 \times 10^{-6} \times 10}{1.14 \times 10^3} \times 249 \times 9.8 = \]
\[= \frac{6.28 \times 0.000260 \times 10^3 \times 2440.2 = 28 \text{ м}^3 / \text{сут} .}{1.14} \]
Определяем параметр размещения скважины (4)
\[\rho_0 = \frac{250}{4 \times 10} = 6.2 . \]
Далее с помощью графика (Рис. 2) определяем безразмерный безводный дебит
\[q(\rho_0 \tilde{h}) = 2 . \]
Полученные данные подставляем в формулу (1)
\[Q_1 = 2 \times 28 = 56 \text{ м}^3 / \text{сут} . \]
Определим безводный дебит для скважины 5хх, для этого по формуле (2) определим \(Q_0\):
\[Q_0 = \frac{2 \times 3.14 \times 0.205 \times 10^{-6} \times 9}{1.14 \times 10^3} \times 249 \times 9.8 = \]
\[= \frac{6.28 \times 0.000205 \times 9 \times 2440.2 = 20 \text{ м}^3 / \text{сут} .}{1.14} \]
Определяем параметр размещения скважины (4)
\[\rho_0 = \frac{250}{5 \times 9} = 5.5 . \]
По графику (Рис. 2) определяем безразмерный безводный дебит
\[q(\rho_0 \tilde{h}) = 2 . \]
Полученные данные подставляем в формулу (1)
\[Q_1 = 2 \times 20 = 40 \text{ м}^3 / \text{сут} . \]
Полученные результаты по предельному безводному дебиту представлены в таблице 1, где их можно сравнить со средними значками дебита скважины.
У скважин 12хх и 5хх средний дебит оказался выше, чем расчетный предельный, отсюда можно сделать вывод о том, что была нарушенна статичность конуса. Средний дебит скважины 11хх напротив, оказался значительно ниже расчетного.
Время прорыва подошвенной воды рассчитываем, используя формулу Маскета (Maske, 1953), для этого нужно определить количество отборной нефти до того, как
конус воды прорывается в скважине

$$Q = \alpha \cdot m \cdot h_0 \cdot \frac{K_r \cdot D}{K_B},$$

где α – произведение коэффициента нефтеотдачи блока на коэффициент усадки нефти.

Коэффициент усадки нефти находится по формуле

$$U = \frac{b - 1}{b} \cdot 100,$$

b – объемный коэффициент.

D – поправочный коэффициент, определяется по формуле

$$D = \frac{100(h_0 - d)}{h_0},$$

h_0 – нефтенасыщенная толщина пласта, м; d – глубина вскрытия нефтенасыщенной части пласта, м.

Далее определяем время (в сутках) через которое произойдет прорыв воды в скважине:

$$T = \frac{Q}{q},$$

где Q – количество отобранной нефти, до того как она прорывается в скважине, м3; q – средний дебит скважины, м3/сут (Маккет, 1953).

Определим количество отобранной нефти из скважины 11хх, прежде чем вода прорывается в скважине. Воспользуемся формулой (5), сначала определим коэффициент усадки нефти (6)

$$U = \frac{1,206 - 1}{1,206} \cdot 100 = 17,08.$$

Значение данного коэффициента будет использовано при расчете по всем скважинам.

Производство коэффициента нефтеотдачи блока на коэффициент усадки нефти α равен 8,5;

Определяем поправочный коэффициент D по формуле (7)

$$D = \frac{100 \cdot (10 - 9)}{10} = 10.$$

Полученные данные подставляем в формулу (5)

$$Q = 8,5 \cdot 0,24 \cdot 10^3 \cdot 0,250 \cdot 10^{-6} = 25500 \text{м}^3.$$

Для определения времени прорыва воды в скважине 11хх воспользуемся формулой (8). Данные по среднему дебиту скважин указаны в таблице 1.

$$T = \frac{25500}{25500} = 796 \text{сут}.$$

Скважина 12хх. Определяем объем отобранной нефти, до прорыва воды.

Произведение коэффициента нефтеотдачи блока на коэффициент усадки нефти равен 10,2.

Определяем поправочный коэффициент D по формуле (7)

$$D = \frac{100 \cdot (10 - 9)}{9} = 11,1.$$

Полученные данные подставляем в формулу (5)

$$Q = 7,6 \cdot 0,24 \cdot 10^3 \cdot \frac{0,250 \cdot 10^{-6} \cdot 10,2}{0,150 \cdot 10^{-6}} = 20160 \text{м}^3.$$

Определяем время прорыва воды в скважине (8)

$$T = \frac{20160}{41} = 491 \text{сут}.$$
V.A. Lushpeev, O.A. Lushpeeva, O.V. Tyukavkina, V.I. Strelyaev.
Method of determining the cause of water cut wells.

The main objects of the operation of large oil fields in Western Siberia, are in the final stages of development, which is characterized by high water cut wells, the low rate of recovery of oil. The main reason for water cut wells is a breakthrough of water from injection wells and coming in reservoir with bottom water. This paper describes a method of determining the cause water cut wells for understanding under what operating conditions may well prevent premature breakthrough of bottom water and extend the free period of operation.

Keywords: coning, bottom water, production and injection wells, the maximum flow rate.

Валерий Иванович Стреляев
Кандидат геолого-минералогических наук, доцент кафедры динамической геологии. Научные интересы: изучение актуальных вопросов и проектных решений в технике и технологии разведки месторождений полезных ископаемых.

Научный исследовательский Томский государственный университет. 634050, Томская обл., г. Томск, ул. Ленина 36, Кафедра динамической геологии.

Владимир Александрович Лушпев
Кандидат технических наук, доцент кафедры Нефтегазовое дело. Научные интересы: инновационные технологии в области гидродинамических исследований скважин, разработки и эксплуатации нефтяных и газовых месторождений.

Ольга Александровна Лушпева
Доктор технических наук, профессор кафедры Нефтегазовое дело. Научные интересы: инновационные методы при бурении скважин, новые технологии в строительстве скважин. Экологический мониторинг нефтяных месторождений.

Ольга Валерьевна Тюкавкина
Кандидат геолого-минералогических наук, доцент кафедры Нефтегазовое дело. Научные интересы: геологическое моделирование, изучение процессов рифтогенеза в Западной Сибири, обоснование и выбор методов повышения нефтеотдачи пластов.

Сургутский институт нефти и газа (филиал) ТюмГНГУ. 626400, Тюменская обл., ХМАО, г. Сургут, ул. Энтузиастов 38, Кафедра Нефтегазовое дело. Тел.: 8 (3462) 356445; факс: 8 (3462) 35-25-88.