Pages
Download article

Vosnesensky Cu-porphyry deposit (Southern Urals): formation conditions, trace elements, sulfur isotopes and fluid sources

S.E. Znamensky, N.N. Ankusheva, D.A. Artemiev

Original article

DOI https://doi.org/10.18599/grs.2020.3.48-54

48-54
rus.

open access

Under a Creative Commons license
The paper shows new fluid inclusion and isotopic-geochemical data for minerals from sulphide-carbonate-quartz veins of Vosnesensky Cu-porphyry deposit. Fluid inclusions were analyzed by means Linkam TMS-600 cryostage equipped with Olympus BX 51 optical microscope; trace element amounts were performed used Agilent 7700x and ELAN 9000 mass-spectrometers; sulphur isotopic composition was analyzed on DeltaPLUS Advantagе mass-spectrometer. We determined that fluid inclusions in quartz were homogenized between 215 and 315 ºС, and in latest calcite, they are 230–280 ºС. Fluids are К-Na water chloride with salinity of 3–12 wt % NaCl-eq. Quartz contain high amounts of Al (184–5180 ppm), K (20.1–1040 ppm), Na (30.2–1570 ppm) and Ti (38.4–193 ppm). The REE distribution spectra of pyrite are characterized by light lanthanides accumulation (LaN/YbN = 3.6–6.44), and negative of Ce anomalies (0.7–0.92) and Eu (0.78–0.99). The Y/ Ho ratio in pyrite varies from 27.6 up to 36.8. The δ34S values in pyrite were –1.01…0.8 ‰, in chalcopyrite – 0.9 ‰. The data testify the Cu-porphyry mineralization of Vosnesensky deposit was formed due to magmatic acid high-aluminous К-Na chloride fluid enriched with light REE in mesothermal environment. We identified the geochemical markers of interaction between fluid and host rocks.
 

Southern Urals, Cu-porphyry deposit, fluid inclusions, trace elements, LA-ICP-MS, sulphur isotopic composition

 

  • Abramov S.S.,Plotinskaya O.YU. Groznova Ye.O. (2016). History of hydrothermal processes at the Mikheevsky Mo-Cu field according to the study of secondary changes and fluid inclusions. Proc. XVII All-Russ. Conf. on Thermobaric geochemistry. Ulan-Ude: BNTS SO RAN, pp. 11–12. (In Russ.).
  • Bau M. (1996). Controls on the fractionation of isovalent trace elements in magmatic and agueous systems: evidence from Y/Ho, Zr/Hf and lanthanide tetrad effect. Contrib. Mineral. Petrol., 123, рp. 323–333. https://doi.org/10.1007/s004100050159
  • Bau M., Dulski, P. (1995). Comparative study of yttrium and rare-earth element behaviours in fluorine-rich hydrothermal fluids. Contrib. Mineral. Petrol, 119, pp. 213–223. https://doi.org/10.1007/BF00307282
  • Bau M., Möller P. (1992). Rare Earth Element Fractionation in Metamorphogenic Hydrothermal Calcite, Magnesite and Siderite. Mineralogy and Petrology, 45, рp. 231–246. https://doi.org/10.1007/BF01163114
  • Bodnar R.J., Vityk M.O. (1994). Interpretation of microthermometric data for H2O-NaCl fluid inclusions. Fluid inclusions in minerals: methods and applications (Eds. De Vivo B. and Frezzotti M.L). Pontignana-Siena, Virginia Polytechnic Institute and State University, 1994, pp. 117–130.
  • Castorina F., Masi U. (2008). REE and Nd-isotope evidence for the origin siderite from the Jebel Awam deposit (Central Morocco). Ore Geology Reviews, 34, pp. 337–342. https://doi.org/10.1016/j.oregeorev.2008.03.001
  • Davis D.W., Lowenstein T.K., Spenser R.J. (1990). Melting behavior of fluid inclusions in laboratory-grown halite crystals in the systems NaCl-H2O, NaCl-KCl-H2O, NaCl-MgCl2-H2O and CaCl2-NaCl-H2O. Geochim. Et Cosmochim. Acta, 54, pp. 591–601. https://doi.org/10.1016/0016-7037(90)90355-O
  • Grabezhev A.I. (2009). Sr-Nd-C-O-H-S isotope-geochemical description of South Urals porphyry-copper fluid-magmatic systems: probable sources of matter. Litosfera, 6, pp. 66–89. (In Russ.)
  • Grabezhev A.I., Belgorodsky E.A. (1992). Productive granites and metasomatites of copper-porphyry deposits. Ekaterinburg: Nauka, 199 p. (In Russ.)
  • Guangzhou M., Renmin H., Jianfeng G., Weiqiang L., Kuidong Z., Guangming L.(2009). Existing forms of REE in gold-bearing pyrite of the Jinshan gold deposit, Jiangxi Province, China. Journal of rare earths, 27(6), pp. 1079–1087. https://doi.org/10.1016/S1002-0721(08)60392-0
  • Kosarev A.M., Puchkov V.N., Seravkin I.B., Kholodnov V.V., Grabezhtv A.I., Ronkin Y.L. (2014). New data on the age and geodynamic position of copper-porphyry mineralization in the Main Uralian Fault zone (Southern Urals). Doklady Earth Sciences, 495(1), pp. 1317–1321. https://doi.org/10.1134/S1028334X1411004X
  • McDonough W. F., Sun S. (1995). The composition of the Earth. Chemical Geology, 120, pp. 223–253. https://doi.org/10.1016/0009-2541(94)00140-4
  • Ohmoto H., Rye R. O. (1979). Isotopes of sulfur and carbon. Geochemistry of hydrothermal ore deposits. N.-Y.: John Wiley and Sons, pp. 509–567.
  • Ohmoto H., Goldhaber M. B. (1997). Sulfur and carbon isotopes. Geochemistry of hydrothermal ore deposits. N.-Y.: Wiley, pp. 517–611.
  • Prokofev V.Y., Afanaseva Z.B., Ivanova G.F., Boiron M.C., Marignac C. (1994). Study of fluid inclusions in minerals of the Olimpiadinskoe Au (Sb-W) deposit (Enisey Mountain-Ridge). Geokhimiya, pp. 1012-1029. (In Russ.)
  • Rimskaya-Korsakova M.N., Dubinin A.V. (2003). Rare earth elements in sulfides of submarine hydrothermal vents of the Atlantic ocean. Doklady Earth Sciences, 389(3), pp. 432–436.
  • Roedder E. (1984). Fluid inclusions. Reviews in mineralogy, 12, 646 p.
  • Rusk B.G. (2012). Сathodoluminescent textures and trace elements in hydrothermal quartz. Quartz: Deposits, Mineralogy and Analytics. New-York: Springer, 360 p. https://doi.org/10.1007/978-3-642-22161-3_14
  • Rusk B.G., Lowers H.A., Reed M.H. (2008). Trace elements in hydrothermal quartz: Relationships to cathodoluminescent textures and insights into vein formation. Geology, 36(7), pp. 547–550. https://doi.org/10.1130/G24580A.1
  • Schwim G., Markl G. (2005). REE systimatics in hydrothermal fluorite. Chemical Geology, 216, pp. 225–248. https://doi.org/10.1016/j.chemgeo.2004.11.012
  • Shishakov V.B., Sergeeva N.E., Surin S.V. (1988). The Voznesenskoe porphyry copper deposit at South Urals. Geologiya rudnykh mestorozhdeniy, 2, pp. 85–90. (In Russ.)
  • Sverjensky D.A. (1984). Europium redox equilibria in aqueous solution. Earth Planet Science Letters, 67, pp. 70–78.
  • Wilkinson J.J. (2001). Fluid inclusions in hydrothermal ore deposits. Lithos, 55, pp. 229–272. https://doi.org/10.1016/S0024-4937(00)00047-5
  • Znamensky S.E. (2017). Rare earth elements and yttrium in calcite and pyrite of the Orlovka gold deposit (the Southern Urals). LITHOSPHERE (Russia), 1, pp. 135–146. (In Russ.)
  • Znamensky S.E., Shafigullina G.T., Znamenskaya N.M., Kosarev A.M. (2019). The Voznesenka porphyry copper deposit (South Urals): structural control of mineralization and geochemistry of intrusive rocks. Vestnik Akademii nauk Respubliki Bashkortostan, 2, pp. 25–35 (In Russ.)
  •  
Sergey E. Znamensky
Institute of Geology of the Ufa Federal Research Centre of the Russian Academy of Sciences
16/2 K. Marx st., Ufa, 450077, Russian Federation
 
Natalya N. Ankusheva
Institute of Mineralogy of the South Urals Federal Research Center of Mineralogy and Geoecology of the Urals Branch of the Russian Academy of Sciences
1 Ilmensky Zapovednik, Miass, 456317, Russian Federation  
 
Dmitry A. Artemiev
Institute of Mineralogy of the South Urals Federal Research Center of Mineralogy and Geoecology of the Urals Branch of the Russian Academy of Sciences
1 Ilmensky Zapovednik, Miass, 456317, Russian Federation
 

For citation:

Znamensky S.E., Ankusheva N.N., Artemiev D.A. (2020). Vosnesensky Cu-porphyry deposit (Southern Urals): formation conditions, trace elements, sulfur isotopes and fluid sources. Georesursy = Georesources, 22(3), pp. 48–54. DOI: https://doi.org/10.18599/grs.2020.3.48-54