Pages
Download article

Use of induced acoustic emission of reservoirs for the detection and recovery of hydrocarbons

V.V. Dryagin

Original article

DOI https://doi.org/10.18599/grs.2018.3.246-260

246-260
rus.
eng.

open access

Under a Creative Commons license

The results of a study of seismoacoustic emission appearing in a saturated porous geological environment with forced acoustic impact on cores and in wells are presented. It is shown that the wave action effectively influences the increase in permeability relative to the initial value and the acoustic emission of a saturated porous medium caused by the wave action serves as a reliable source of information on its reservoir roperties. The hydrostatic pressure gradient contributes to the acoustic emission mechanism, which creates fluid filtration. In this case, the greater the core permeability, the wider the emission frequency band, the smaller the permeability, the narrower the band of the spectrum, which approaches the form of a discrete set of frequencies. Similar data were obtained in oil reservoirs, where a continuous spectrum is characteristic of porous sandstones of terrigenous reservoirs, and single narrow-band spectra, for fractured carbonate reservoirs. The principle of excitation of high-intensity waves of elastic energy and registration of waves of emission origin in the reservoir provides reliable information on reservoir productivity in both perforated well and non-perforated well, and can give recommendations on the selection of the perforation interval and also stimulate the inflow of oil from the reservoir.

 

seismoacoustic emission, acoustic impact, saturated porous medium, spectrum of induced acoustic emission, reservoir permeability

 

  • Abukova L.A. (1997). The main types of fluid systems of sedimentary oil and gas basins. Geologiya nefti i gaza = Oil and Gas Geology, 9, pp. 25-29. (In Russ.)
  • Adronov A.A., Vitt A.A., Khaikin S.E. (1981). Theory of oscillations. Moscow: Nauka, 916 p. (In Russ.)
  • Alekseev A.S., Geza N.I., Glinskii B.M. et al. (2004). Active seismology with powerful vibrational sources. Novosibirsk: IVM and MG SO RAN. (In Russ.)
  • Barabanov V.L., Grinevskii A.O., Kisin I.G., Nikolaev A.V. (1987). On some effects of the vibrational seismic impact on the water-saturated medium, their comparison with the effects of remote earthquakes. DAN, 297(1), pp. 52-56. (In Russ.)
  • Belyakov A.S., Lavrov V.S., Nikolaev A.V. (2004). Acoustic resonance of an oil deposit. DAN Geophysics, 397(1), pp. 101-102. (In Russ.)
  • Chebotareva I.Ya., Volodin I.A., Dryagin V.V. (2016). Generation of a low-frequency branch of acoustic emission in rocks under the influence. DAN, 468(2), pp. 205-208. (In Russ.)
  • Chebotareva I.Ya., Volodin I.A., Dryagin V.V. (2017). Acoustic effects in the deformation of structurally inhomogeneous media. Akusticheskii zhurnal = Acoustic journal, 63(1), pp.84-93. (In Russ.)
  • Chebotareva I.Ya., Volodin. I.A. (2012). Images of the hydraulic fracturing process in seismic noise. Doklady RAN, 444(2), pp. 202-207. (In Russ.)
  • Dangel S., Schaepman M.E. et al. (2003). Phenomenology of tremor – like signals observed over hydrocarbon reservoirs. J. Volcanology and Geothermal Res, 128, pp. 135-158.
  • Dryagin V.V. (2001). A method for determining the character of the reservoir saturation. Patent RF, No. 2187636. (In Russ.)
  • Dryagin V.V. (2013). Seismoakusticheskaya emissiya nefteproduktivnogo plasta [Seismoacoustic emission of an oil-producing bed]. Akusticheskii zhurnal = Acoustic journal, 59(6), pp. 744-751. (In Russ.)
  • Dryagin V.V., Ivanov D.B., Nigmatullin D.F., Shumilov A.V. (2014). Seismic-acoustic emission of producing formation in detection and extraction technology. Geofizika = Geophysics, 4, pp. 54-59. (In Russ.)
  • Dryagin V.V., Kuznetsov O.L., Starodubtsev A.A., Rok V.E. (2005). Search for Hydrocarbons in Wells by the Method of Induced Seismoacoustic Emission. Akusticheskii zhurnal = Acoustic journal, 51(suppl. 1), pp. 66-73. (In Russ.)
  • Engelbrecht J., Khamidullin Y. (1988). On the possible amplification of nonlinear seismic waves. Phys. Earth Planet. Inter, 50(1), pp. 39-45.
  • Grafov B.M., Arutyunov S.L., Kazarinov V.E, Kuznetsov O.L., Sirotinskii Yu.V, Suntsov A.E. (1998). Analysis of geoacoustic radiation of oil and gas deposits using ANCHAR technology. Geofizika = Geophysics, 5, pp.24-28. (In Russ.)
  • Greshnikov V.A., Drobot Yu.B. (1976). Acoustic emission. Moscow: Standarts Publ., 272 p. (In Russ.)
  • Huang N. E., Shen Z., Long S. R., Wu M. C., Shih H. H., Zheng Q., Yen N.-C., Tung С. C., and Liu H.H. (1998). The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proc. R. Soc. Lond. A, 454, pp. 903-995. 
  • Khismatullin R.K. (2007). Dynamics of the stress-strain state of a rock at different types of saturation. Vestnik SamGU. Estestvennonauchnaya seriya,  9/1(59), pp. 232-241. (In Russ.)
  • Krylov V.M. (1983). On the radiation of sound by developing fractures. Akusticheskii zhurnal = Acoustic journal, 29(6), pp. 790-798. (In Russ.)
  • Kurlenya M.V., Oparin V.N., Vostrikov V.I. (1993). On the formation of elastic wave blocks during pulsed excitation of block media. Waves of pendulum type Vμ. Doklady akademii nauk, 333,(4), pp. 515-521. (In Russ.)
  • Kurlenya M.V., Serdyukov S.V. (1999). Low-frequency resonances of seismic luminescence of rocks in a low-energy vibroseis field. FTPRPI, 1. (In Russ.)
  • Merson M., Mitrofanov V., Safin D. (1999). Possibilities of ultrasound in oil production. Neft’ Rossii [Oil of Russia], 1, pp. 17-23. (In Russ.)
  • Mitrofanov V.P., Dzyubenko A.I., Nechaeva N.Yu., Dryagin V.V. (1998). The results of field tests of the acoustic treatment of the bottomhole formation zone. Geologiya, geofizika i razrabotka neftyanykh mestorozhdenii = Geology, geophysics and development of oil fields, 10, pp. 29-35. (In Russ.)
  • Mitrofanov V.P., Terent’ev B.M., Zlobin A.A. (1998). Petrophysical feasibility of acoustic stimulation of water-oil displacement processes. Geologiya, geofizika i razrabotka neftyanykh mestorozhdenii = Geology, geophysics and development of oil fields, 9, pp. 22-27. (In Russ.)
  • Nikolaevskii V.N. (1992). Vibration of mountain massifs and ultimate oil recovery. Mekhanika zhidkosti i gaza = Fluid Dynamics, 5, pp. 110-119. (In Russ.)
  • Nikolaevskii V.N. (2005). Seismic vibration technique for reanimation of oil and gas watered layer. Geofizicheskie issledovaniya = Geophysical research, 1, pp.37-47. (In Russ.)
  • Nikolaevskii V.N., Stepanova G.S. (2005). Nonlinear Seismics and the Acoustic Effect on the Oil Recovery. Akusticheskii zhurnal = Acoustic journal, 51(Is. «Geoakoustics»), pp. 150-159. (In Russ.)
  • Pikovskii M., Rozenblyum M., Kurts Yu. (2003). Synchronization. A fundamental nonlinear phenomenon. Moscow: Tekhnosfera, 496 p. (In Russ.)
  • Poznyakov V.A. (2005). The intensity of the scattered waves is a new seismic attribute for the prediction of the filtration-capacitive properties of the oil-saturated reservoir. DAN Geophysics, 404(1), pp.105-108. (In Russ.)
  • Roberts P.M. (2005). Laboratory Observations of Porous Fluid-Flow Behavior in BereaSandstone Induced by Low-Frequency Dynamic Stress Stimulation. Acoust. Phys., 51(Suppl. 1), pp. S140-S148. https://doi.org/10.1134/1.2133962
  • Roberts P.M., Venkitaraman A., Sharma M. M., (2000). Ultrasonic Removal of Organic Deposits and Polymer Induced Formation Damage, SPE Drill Completion, 15(1), pp. 19-24. https://doi.org/10.2118/62046-PA
  • Robsman V.A. (1996). Nonlinear transformation of probability distributions of acoustic emission signals during the evolution of an ensemble of defects in a solid. Akusticheskii zhurnal = Acoustic journal, 42(6), pp. 846-852. (In Russ.) 
  • Rudenko O.V. (2006). Giant nonlinearities in structurally inhomogeneous media and the fundamentals of nonlinear acoustic diagnostic techniques. UFN, 176(1), pp. 77-95. (In Russ.)
  • Sboev V.M. (1988). Investigation of microseismic processes occurring in an array of rocks of underground mines. Novosibirsk, 71 p. (Preprint/Institute of Mining, Siberian Branch of the USSR Academy of Sciences, No. 25) (In Russ.)
  • Stepanova G.S., Nenartovich T.L., Yagodov G.N. (2005). Comparative analysis of the effect of acoustic power on the degassing of the oil model. Enhanced oil recovery technologies: Coll. papers, 133, pp.107-116. (In Russ.)
  • Stepanova G.S., Yagodov G.N., Nenartovich T.L., Nikolaevskii V.N. (2003). Influence of ultrasonic vibrations on the process of oil degassing. Burenie i neft’ = Drilling and oil, 7-8, pp. 36-38. (In Russ.)
  • Tertsagi K. (1961). Theory of soil mechanics. Transl. from Ger. Moscow: Gosstroiizdat, 507 p. (In Russ.)
  • Venkitaraman A., Roberts P. M., Sharma M. M. (1995). Ultrasonic Removal of Near-Wellbore Damage Caused by Fines and Mud Solids. SPE Drill Completion, 10(3), pp. 193-197.
  • Vilchinskaya N.A., Nikolaevskii V.N. (1984). Acoustic emission and spectrum of seismic signals. Izvestiya AN SSSR. Ser. Fizika Zemli, 5, pp. 91-100. (In Russ.)
  • Volodin I.A. (2003). Nonlinearity and multiscale in seismoacoustics. Problemy geofiziki XXI veka [Problems of geophysics of the XXI century]. Book 2. Moscow: Nauka, pp. 5-36. (In Russ.)
  • Volodin I.A., Chebotareva I.Ya. (2014). Seismic emission in technological impact zones. Akusticheskii zhurnal = Acoustic journal, 60(5), pp. 505-517. (In Russ.). 
  • Voronina I.Yu., Epifanov V.P. (1980). Acoustic studies of structural changes in granite under axial compression. Akusticheskii zhurnal = Acoustic journal, 26(3), pp. 371-376. (In Russ.)
  •  
Veniamin V. Dryagin
Research and Production Company Intensonic LLC
Amundsen st., 100 of. 104, Ekaterinburg, 620016, Russian Federation
 

For citation:

Dryagin V.V. (2018). Use of induced acoustic emission of reservoirs for the detection and recovery of hydrocarbons. Georesursy = Georesources, 20(3), Part 2, pp. 246-260. DOI: https://doi.org/10.18599/grs.2018.3.246-260