Pages
Download article

Postcollisional evolution features of the intracontinental structures formed by overthrusting

O.I. Parphenuk

Original article

DOI https://doi.org/10.18599/grs.2018.4.377-385

377-386
rus.
eng.

open access

Under a Creative Commons license

The investigation of intracontinental collision structures is conducted based on the complex model of the thermal and mechanical evolution of overthrusting process for the rheologically layered lithosphere, which includes brittle upper crust, the lower crust and lithospheric upper mantle with different effective viscosity values. Finite element models with Lagrangian approach were used for the problem simulation. It was shown that thermal evolution of continental orogens essentially results from the geometry and topography due to thrusting and postcollision stage. This work concentrates on the thermal parameters influence on the evolution of collision zones aimed to the study of possibility of granite melt formation. Calculations for mean continental initial temperature distribution lead to the conclusion of possibility of granite melt formation for the case of “wet” granite solidus. The horizon of temperatures higher than “wet” granite solidus appears at the level of 30-40 km, moving upward to the depth 15-20 km at postcollision stage. The early postcollision evolution shows some heat flow increase due to the thickening of the upper crust with maximum heat generation rate. Further history leads to the stable heat flow values because additional loading redistribution resulting from the denudation of surface uplift and corresponding sedimentation is small due to the local erosion in our model. It was shown that surface heat losses after the termination of horizontal shortening depend to a greater extent on radiogenic heat generation rather than thermal conductivity value in the upper crust.

 

collision, overthrusting, evolution, heat generation, heat flow value, thermal conductivity, rheology, temperature, solidus

 

  • Barbey P., Convert J., Morean B. et al. (1984). Petrogenesis and evolution of an Early Proterozoic collisional orogen: the Granulite Belt of Lapland and the Belomorides (Fennoscandia). Bull. Geol. Soc. Finl., 56, pp. 161-188. https://doi.org/10.17741/bgsf/56.1-2.010
  • England P., Thompson A.B. (1984). Pressure – temperature – time paths of regional metamorphism. Part I: Heat transfer during the evolution of regions of thickened continental crust. J. Petrology, 25, pp. 894-928. https://doi.org/10.1093/petrology/25.4.894
  • Gaal G., Berthelsen A., Gorbatschev R. et al. (1989). Structure and composition of the Precambrian crust along the POLAR Profile in the northern Baltic Shield. Tectonophysics, 162, pp. 1-25. https://doi.org/10.1016/0040-1951(89)90354-5
  • Gerdes A., Worner G., Henk A. (2000). Post-collisional granite generation and HT – LP metamorphism by radiogenic heating: the Variscan South Bohemian Batholith. Journal of the Geological Society, 157, pp. 577-587. https://doi.org/10.1144/jgs.157.3.577
  • Jaupart C., Mareschal J.-C. (2004). Constraints on crustal heat production from heat flow data. Treatise on Geochemistry, V. 3: The Crust. Ed. by R.L. Rudnick. Amsterdam: Elsevier Sci. Pub., pp. 65-84.
  • Jaupart C., Mareschal J.-C. (2011). Heat generation and transport in the Earth. New York: Cambridge Univ. Press, 464 p.
  • Jaupart C., A. Provost (1985). Heat focusing, granite genesis and inverted metamorphic gradients in continental collision zones. Earth Planet. Sci. Lett., 73, p. 385-397. https://doi.org/10.1016/0012-821X(85)90086-X
  • Luosto U., Flueh E.H., Lund C.-E. (1989). The crustal structure along the POLAR Profile from seismic refraction investigations. Tectonophysics, 162, pp. 51-85. https://doi.org/10.1016/0040-1951(89)90356-9
  • Mareschal J.-C. (1994). Thermal regime and post-orogenic extension in collision belts. Tectonophysics, 238, pp. 471-484. https://doi.org/10.1016/0040-1951(94)90069-8
  • Parphenuk O.I. (2014). Analiz vliyaniya erozii kollizionnykh podnyatii na protsess eksgumatsii glubinnykh porod (chislennoe modelirovanie) [Analysis of the collisional uplifts erosion influence on the overthrusted structures and the process of deep crustal rocks exhumation (numerical modeling)]. Vestnik KRAUNTs = Bulletin of Kamchatka Regional Association «Educational-Scientific Center». Earth Sciences, 1(23), pp. 107-20. (In Russ.)
  • Parphenuk O.I., Mareschal J.-C. (1998). Numerical modeling of the thermomechanical evolution of the Kapuskasing structural zone, Superior province, Canadian shield. Izvestiya. Physics of the Solid Earth, 10, pp. 22‑32. (In Russ.)
  • Parphenuk O.I. (2015). Uplifts formation features in continental collision structures (evolution modeling). Russian Journal of Earth Sciences, 15, ES4002, 8 p. https://doi.org/10.2205/2015ES000556
  • Parphenuk O.I. (2016). Thermal regime and heat transfer during the evolution of continental collision structures. Russian Journal of Earth Sciences, 16, ES6006, 10 p. https://doi.org/10.2205/2016ES000589
  • Parphenuk O.I., Dechoux V., Mareschal J.-C. (1994). Finite-element models of evolution for the Kapuskasing structural zone. Can. J. Earth Sci., 31(7), pp. 1227-1234. https://doi.org/10.1139/e94-108
  • Perchuk L.L. (1973). Termodinamicheskii rezhim glubinnogo petrogeneza [Thermodynamic regime of deep petrogenesis]. Moscow: Nauka, 318 p. (In Russ.)
  • Perchuk L.L., Krotov A.V., Gerya T.V. (1999). Petrologiya amfibolitov poyasa Tana i granulitov Laplandskogo kompleksa [Petrology of amphibolites of the Tana belt and granulites of the Lapland complex]. Petrologiya = Petrology, 7(4), pp. 356-381. (In Russ.)
  • Percival J.A. (1990). A field guide through the Kapuskasing uplift, a cross section through the Archean Superior Province. Exposed Cross-Sections of the Continental Crust, NATO ASI Ser., 317, pp. 227-283. https://doi.org/10.1007/978-94-009-0675-4_10
  • Popov Yu.A., Romushkevich R.A., Miklashevskii D.E. et al. (2008). Novye rezul’taty geotermicheskikh i petroteplovykh issledovanii razrezov kontinental’nykh nauchnykh skvazhin [New results of geothermal and petrothermal studies of the sections in continental scientific wells]. Teplovoe pole Zemli i metody ego izucheniya [Proc. Int. Conf. «The Earth’s Thermal Field and Related Research Methods»]. Ed. Yu.A. Popov. Moscow: RIO RGGRU, pp. 208-212. (In Russ.)
  • Reddy J.N. (1984). An introduction to the Finite Element Method. McGrow-Hill: New-York, 459 p.
  • Rozen O.M., Fedorovskii V.S. (2001). Kollizionnye granitoidy i rassloenie zemnoi kory [Collisional granitoids and stratification of the Earth’s crust]. Trudy GIN RAN [Proceedings of Geological Institute of RAS], 545, 188 p. (In Russ.)
  • Sharov N.V. (1993). Litosfera Baltiiskogo shchita po seismicheskim dannym [Lithosphere of the Baltic Shield according to seismic data]. Apatity: KNTs RAN, 145 p. (In Russ.)
  • Sokolov S.D. (1990). Kontseptsiya tektonicheskoi rassloennosti litosfery: istoriya sozdaniya i osnovnye polozheniya [The concept of tectonic stratification of the lithosphere: the history of foundation and the main aspects]. Geotektonika = Geotectonics, 6, pp. 3-19. (In Russ.)
  • Tectonophysics. (1989). Special Issue: The European Geotraverse, Part 5: The Polar Profile. 162(1-2), 171 p.
  •  

Olga I. Parphenuk
Schmidt Institute of Physics of the Earth of the Russian Academy of Sciences
Buil. 1, 10, B. Gruzinskaya st., Moscow, 123242, Russian Federation
 

For citation:

Parphenuk O.I. (2018). Postcollisional evolution features of the intracontinental structures formed by overthrusting. Georesursy = Georesources, 20(4), Part 2, pp. 377-385. DOI: https://doi.org/10.18599/grs.2018.4.377-385