Download article

Solid-state redistribution of mineral particles in the upwelling mantle flow as a mechanism of chromite concentration in the ophiolite ultramafic rocks (by the example of Kraka ophiolite, the Southern Urals)

D.E. Saveliev, V.B. Fedoseev

Original article



open access

Under a Creative Commons license

The main regularities of the structure of chromitite-bearing zones of ultramafic rock of the ophiolitic association are considered on the example of Kraka massifs. In all studied chromitite-bearing zones, olivine demonstrates a strong preferably crystallographic orientation, indicating that plastic flow was one of the main factors of petrogenesis and ore formation. A critical review of existing ideas about the origin of ophiolitic chromitites has been carried out. It is shown that for models involving the reaction and magmatic formation of dunites and chromitites, there are a number of difficulties. In particular, the application of the magma mixing model to the mantle ultramafiс rocks for the formation of chrome ores is faced with the problem of “free space”. Free space is necessary for the deposition of large volumes of ores, which is absent in a very low-porous crystalline upper mantle.

In the “melt-mantle” interaction model, it is difficult to explain the often observed abrupt contacts of dunites and harzburgites, as well as an increase in the content of orthopyroxene in the near-contact parts of harzburgites, which is very often observed in ophiolite massifs. In addition, there is no mechanism for the formation of chromitites as geological bodies in this model. We have shown that the main trend in the composition and structure of the mantle section of ophiolites is stratification, accompanied by the separation of the rheologically most “weak” aggregates of polycrystalline olivine (dunites), which are host rocks for chrome ores. The stratification of the mantle material occurred during the solid-phase redistribution of minerals in the rocks, which are a dispersion system. In this work, a thermodynamic model is substantiated, which demonstrates the possibility of the emergence of solid-state flows in the conditions of the upper mantle and which makes it possible to eliminate some of the difficulties and contradictions characteristic of the magmatic and reaction-magmatic hypotheses.


ultramafic rocks, olivine, chromitite, plastic flow, stratification, rheomorphic segregation


  • Abakumov G.A., Fedoseev V.B. (2002). Partially Miscible Liquids in a Centrifugal Field. Doklady Physical Chemistry, 383(4), pp.89-92. (In Russ.)
  • Abakumov G.A., Fedoseev V.B. (2003). Effect of the Rotor Shape on the Efficiency of a Liquid Centrifuge. Doklady Physics, 48(5), pp. 232-234. (In Russ.)
  • Abakumov G.A., Fedoseev V.B. (2010). Effect of the vessel shape and spontaneous appearance of circulation due to spinning of multicomponent liquid mixtures. Vestnik KGTU, 1, pp. 101-104. (In Russ.)
  • Acrivos A., Herbolzheimer E. (1979). Enhanced sedimentation in settling tanks with inclined walls. Journal of Fluid Mechanics, 92, pp. 435-450.
  • Arai S., Miura M. (2015). Podiform chromitites do form beneath mid-ocean ridges. Lithos, 232, pp. 143-149.
  • Auge T. (1987). Chromite deposits in the northern Oman ophiolite: mineralogical constraints. Mineralium Deposita, 22, pp. 1-10.
  • Bakirov A.G. (1963). About the origin of dunites and chromites of the Kempirsay massif. Magmatizm, metamorfizm, metallogeniya Urala [Magmatism, metamorphism, metallogenicity of the Urals]. Sverdlovsk, pp. 325-330. (In Russ.)
  • Ballhaus C. (1998). Origin of the podiform chromite deposits by magma mingling. Earth and Planetary Science Letters, 156, pp. 185-193.
  • Borisova A.Y., Ceuleneer, G., Kamenetsky V.S., Arai S., Béjina F., Abily B., Bindeman I.N., Polvé, M., De Parseval P., Aigouy T., Pokrovski G.S. (2012). A new view on the petrogenesis of the Oman ophiolite chromitites from microanalyses of chromite-hosted inclusions. Journal of Petrology, 53, pp. 2411-2440.
  • Boronin S. A. (2008). Investigation of the Stability of a Plane-Channel Suspension Flow with Account for Finite Particle Volume Fraction. Fluid Dynamics, 43(6), pp. 873-884. (In Russ.)
  • Carter N.L. (1976). Steady state flow of rocks. Reviews of Geophysics and Space Physics, 14, pp. 301-360.
  • Cassard D., Nicolas A., Rabinowitch M., Moutte J., Leblanc M., Prinzhoffer A. (1981). Structural Classification of Chromite Pods in Southern New Caledonia. Economic Geology, 76, pp. 805-831.
  • Chashchukhin I.S., Votyakov S.L., Shchapova Yu.V. (2007). Crystal chemistry of chrome spinel and oxithermobarometry of ultramafites of fold belts. Yekaterinburg, IG&G UrO RAN, 310 p. (In Russ.)
  • Coleman R.G. (1977). Ophiolites. Springer-Verlag, 229 p.
  • Denisova E.A. (1989). A folded structure of ultramafic tectonites from massifs of the Southern Urals. Geotektonika, 4, pp. 52-62. (In Russ.)
  • Denisova E.A. (1990). Building and deformation structures of the lherzolite-type ophiolite massifs. Geotektonika, 2, pp. 14-27 (In Russ.)
  • Fedoseev V.B. (2015). Behavior of a solid rectangular parallelepiped in the 2D Couette and Poisseuille flows. Technical Physics, 60 (4), pp. 489-496. DOI: 10.1134/S106378421504009X
  • Fedoseev V.B. (2016). Stratification of a two-phase monodisperse system in a plane laminar flow. Journal of Experimental and Theoretical Physics, 122(5), pp. 915-924.
  • Fedoseev V.B. (2010). Re-distribution of matter under the influence of external fields and stationary model of the Chelomei pendulum. Nelineynyy mir = Nonlinear World, 8(4), pp. 243-247. (In Russ.)
  • Frezzotti M.L., Burke E.A.J., De Vivo B., Stefanini B., Villa I.M. (1992). Mantle fluids in pyroxenite nodules from Salt Lake Crater (Oahu, Hawaii). European Journal of Mineralogy, 4, pp. 1137-1153.
  • Goncharenko A.I. (1989). Deformation and petro structural evolution of alpinotype ultrabasites. Tomsk: Tomsk University Publ., 404 p. (In Russ.)
  • Gonzalez-Jimenez J.M., Griffin W.L., Proenza A., Gervilla F., O’Reilly S.Y., Akbulut M., Pearson N.J., Arai S. (2014). Chromitites in ophiolites: how, where, when, why? Part II. The crystallisation of chromitites. Lithos, 189, pp. 148-158.
  • Gonzalez-Jimenez J.M., Proenza J.A., Gervilla F., Melgarejo J.C., Blanco-Moreno J.A., Ruiz-Sanchez R., Griffin W.L. (2011). High-Cr and high-Al chromitites from the Sagua de Tanamo district, Mayari-Cristal ophiolitic massif (eastern Cuba): Constrains on their origin from mineralogy and geochemistry of chromian spinel and platinum-group-elements. Lithos, 125, pp. 101-121. doi:10.1016/j.lithos.2011.01.016
  • Greenbaum D. (1977). The chromitiferous rocks of the Troodos ophiolite complex, Cyprus. Economic Geology, 72, pp. 1175-1194.
  • Hirth G., Kohlstedt D.L. (1996). Water in the oceanic upper mantle: implications for rheology, melt extration and the evolution of the lithosphere. Earth and Planetary Science Letters, 144, pp. 93-108.
  • Hock M., Friedrich G., Plueger W.L., Wichowski A. (1986). Refractory- and metallurgical-type chromite ores, Zambales Ophiolite, Luzon, Philippines. Mineralium Deposita, 21, pp. 190-199.
  • Johan Z., Martin R.F., Ettler V. (2017). Fluids are bound to be involved in the formation of ophiolitic chromite deposits. European Journal of Mineralogy, 29, pp. 543-555.
  • Kelemen P.B., Dick H.J.B., Quick J.E. (1992). Formation of harzburgite by pervasive melt/rock reaction in the upper mantle. Nature, 358, pp. 635-641.
  • Kelemen P.В., Shimizu N., Salters V.J.M. (1995). Extraction of mid-ocean-ridge basalt from the upwelling mantle by focused flow of melt in dunite channels. Nature, 375, pp. 747-753.
  • Kelemen P.В., Hirth G., Shimizu N., Spiegelman M., Dick H.J.B. (1997). A review of melt migration processes in the adiabatically upwelling mantle beneath oceanic spreading ridges. Philosophical Transactions of the Royal Society of London, Series A, 355, pp. 283-318.
  • Kravchenko G.G. (1969). Role of tectonics during crystallization of the chromite ores of the Kempirsay pluton. Moscow: Nauka, 232 p. (In Russ.)
  • Lago B.L., Rabinowicz M., Nicolas A. (1982). Podiform chromite ore bodies: a genetic model. Journal of Petrology, 23, pp. 103-125.
  • Leblanc M., Ceuleneer G. (1992). Chromite crystallization in a multicellular magma flow: evidence from a chromitite dike in the Oman ophiolite. Lithos, 27, pp. 231-257.
  • Loginov V.P., Pavlov N.V., Sokolov G.A. (1940). Chromite content of the Kempirsay ultrabasic massif: South Ural. Khromity USSR, vol. 2. Moscow-Leningrad: AN USSR Publ., pp. 5-199. (In Russ.)
  • Marakushev A.A. (1988). Petrogenezis [Petrogenesis]. Moscow: Nedra, 293 p. (In Russ.)
  • Miura M., Arai S., Ahmed A.H., Mizukami T., Okuno M., Yamamoto S. (2012). Podiform chromitite classification revisited: a comparison of discordant and concordant chromitite pods from Wadi Hilti, northern Oman opiolite. Journal of Asian Earth Sciences, 59, pp. 52-61.
  • Moskaleva S.V. (1974). Giperbazity i ikh khromitonosnost’ [Ultrabasic rocks and their chromite content]. Leningrad: Nedra, 279 p. (In Russ.)
  • Nevskii Yu.A., Osiptsov A.N. (2009) Modeling Gravitational Convection in Suspensions. Technical Physics Letters, 35 (4), pp. 340-343.
  • Nicolas A., Bouchez J.L., Boudier F., Mercier J.C. (1971). Textures, structures and fabrics due to solid state flow in some European lherzolites. Tectonophysics, 12, pp. 55-86.
  • Nigmatullin R.I. (1987). Dinamika mnogofaznykh sred [Dynamics of multiphase medium]. Moscow: Nauka, vol. 1-2. (In Russ.)
  • Pavlov N.V., Grigorieva-Chuprynina I.I. (1973) Zakonomernosti formirovaniya khromitovykh mestorozhdeniy [The regularities of chrome ore deposits formation] Moskva: Nauka, 200 p. (In Russ.)
  • Pavlov N.V., Grigoryeva I.I., Grishina N.V. (1979). Formation and genetic types of chromite deposits of geosynclinal regions. Usloviya obrazovaniya magmaticheskikh rudnykh mestorozhdeniy [Conditions for the formation of igneous ore deposits]. Moscow: Nauka, pp. 5-78. (In Russ.)
  • Peive A.V. (1969). Okeanicheskaya kora geologicheskogo proshlogo [The oceanic crust of geological past] Geotektonika, 4, pp. 5-23. (In Russ.)
  • Perevozchikov B.V. (1995). Zakonomernosti lokalizatsii khromitovogo orudeneniya v al’pinotipnykh giperbazitakh [Regularities of localization of chromite ore in the alpinotype ultrabasic rocks]. Moscow: Geoinformmark, 47 p. (In Russ.)
  • Poirier J.-P. (1985). Creep of crystals. High-temperature deformation processes in metals, ceramics and minerals. Cambridge University Press, 287 p.
  • Pushkarev E.V., Anikina E.V., Garuti G., Zaccarini F. (2007). Chromium-platinum deposits of the Nizhny Tagil-type in the Urals: structural and compositional characteristics and genetic problems. Lithosphera = Lithosphere, 3, 28-65. (In Russ.)
  • Pushkarev E.V., Kamenetsky V.S., Morozova A.V., Khiller V.V., Glavatskykh S.P., Rodemann T. (2015). Ontogeny of ore Cr-spinel and composition of inclusions as indicators of the pneumatolytic-hydrothermal origin of PGM-bearing chromitites from Kondyor massif, the Aldan Shield. Geologiya rudnykh mestorozhdeniy = Geology of Ore Deposits, 57, pp. 352-380. (In Russ.)
  • Saveliev A.A. (1977). Chromites of the Voykaro-Sininskiy massif. Genezis ul’trabazitov i svyazannogo s nimi orudeneniya [Genesis of ul’trabazites and associated mineralization]. Sverdlovsk, pp. 63-77. (In Russ.)
  • Saveliev D.E. (2012). Chromite-bearing of ultrabasitical massifs of the Southern Urals. Diss. dokt. geol.-min. nauk. [Dr. geol. and min. sci. diss.]. Ufa, 410 p. (In Russ.)
  • Saveliev D.E. (2013). Relationship between the structures of ore-bearing dunite-chromite association and peridotites in the ophiolites (example from Kraka massifs). Litosfera = Lithosphere, 2, pp. 76-91. (In Russ.)
  • Saveliev D.E. (2014). At the question about an origin of olivine poicilitic inclusions in the chronmian spinels from ophiolitic dunites. Geologichesky sbornik, 11, pp. 134-146. (In Russ.)
  • Saveliev D.E., Blinov I.A. (2015). Sindeformatsionnyye vydeleniya khromshpinelidov v plasticheski deformirovannykh agregatakh olivina (ofiolity Kraka, Yuzhnyy Ural) [Syndeformation chrome spinel exsolutions in the plastic deformed olivine aggregates (Kraka ophiolite, the Southern Urals)]. Vestnik Permskogo Universiteta. Geologiya, 4(29), pp. 45-69 (In Russ.). doi: 10.17072/psu.geol.29.44
  • Saveliev D.E., Snachev V.I. (2012). Bednovkraplennyye khromovyye rudy Yuzhnogo Urala i perspektivy ikh prakticheskogo ispolzovaniya [Deposits of poor chromite-ores of the South Urals and prospects of their use]. Rudy i metally, 2, pp. 36-40 (In Russ.).
  • Saveliev D.E., Fedoseev V.B. (2011). Segregatsionnyy mekhanizm formirovaniya tel khromitov v ul’trabazitakh skladchatykh poyasov [Segregation mechanism of chromite bodies formation in ultrabasic rocks of the folding belts]. Rudy i metally. 5, pp. 35-42. (In Russ.)
  • Saveliev D.E., Fedoseev V.B. (2014). Plastic flow and rheomorphic differentiation of the mantle ultramaflc rocks. Vestnik Permskogo universiteta. Geologiya, 4, pp. 22-41. DOI: 10.17072/psu.geol.25.22 (In Russ.)
  • Saveliev D.E., Puchkov V.N., Sergeev S.N., Musabirov I.I. (2017). Deformation-induced decomposition of enstatite in mantle peridotite and its role in partial melting and chromite ore formation. Doklady Earth Sciences, 476(1), pp. 1058-1061. DOI: 10.1134/S1028334X17090161
  • Saveliev D.E., Sergeev S.N. (2018). Enstatite from ophiolite ultramafic rocks: plastic deformation and related chemical changes. Mineralogiya = Mineralogy, 4(1), pp. 68-81. (In Russ.)
  • Saveliev D.E., Snachev V.I., Savelieva E.N., Bazhin E.A. (2008). Geologiya, petrogeokhimiya i khromitonosnost’ gabbro-giperbazitovykh massivov Yuzhnogo Urala [Geology, petrogeochemistry, and chromite content of gabbro-hyperbasic massifs of the South Urals]. Ufa: DizaynPoligrafServis, 320 p. (In Russ.)
  • Saveliev D.E., Belogub E.V., Blinov I.A., Kozhevnikov D.A., Kotlyarov V.A. (2016). Petrological evidences of syndeformation matter segregation during a dunite formation process (for example Kraka ophiolite, the Southern Urals). Mineralogiya = Mineralogy, 4, pp. 56-77. (In Russ.)
  • Savelieva G.N. (1987). Gabbro-ultrabazitovyye kompleksy ofiolitov Urala i ikh analogi v sovremennoy okeanicheskoy kore [Gabbro-ultrabasitical complexes of the Urals ophiolites and their analogues in the present-day oceanic crust]. Moscow: Nauka, 230 p. (In Russ.)
  • Savelieva G.N., Saveliev A.A. (1991). Chromitites in structure of the ophiolite ultramafic rocks of the Urals. Geotektonika, 3, pp. 47-58. (In Russ.)
  • Schwab R.G., Freisleben B. (1988). Fluid CO2 inclusions in olivine and pyroxene and their behavior under high pressure and temperature conditions. Bull. Mineral., 111, pp. 297-306.
  • Shcherbakov S.A. (1990). Plasticheskiye deformatsii ultrabazitov ofiolitovoy assotsiatsii Urala [Plastic deformations of ultrabasic rock of the Urals ophiolite association]. Moscow: Nauka, 120 p. (In Russ.)
  • Sokolov G.A. (1948). Chromites of the Urals, its compositions, crystallization conditions and regularities of location. Trudy IGN AN USSR. Ser. Rudn. Mestorozhdeniy. Moscow: AN USSR Publ., 97(12), 128 p. (In Russ.)
  • Spiegelman M., Kelemen P., Aharonov E. (2001). Causes and consequences of flow organization during melt transport: the reaction infiltration instability in compactible media. Journal of Geophysical Research, 106, pp. 2061-2077.
  • Thayer T.P. (1969). Gravity differentiation and magmatic reemplacemcnt of podiform chromite deposits. Economic Geology Monograph A, pp. 132-146.
  • Thayer T.P. (1964). Principal features and origin of podiform chromite deposits, and some observations on the Guleman-Soridag District, Turkey. Economic Geology, 59, pp. 1497-1524.
  • Varlakov A.S. (1978). An origin of chrome ore in the alpino-type ultramific rocks of the Urals. Petrografiya ultraosnovnykh i schelochnykh porod Urala [Petrography of ultrabasic and alkaline rocks of the Urals]. Sverdlovsk, pp. 63-82 (In Russ.)
  • Yamamoto J., Kagi H., Kaneoka I. Lai Y., Prikhod’ko V.S., Arai S. (2002). Fossil pressures of fluid inclusions in mantle xenoliths exhibiting rheology of mantle minerals: implications for the geobarometry of mantle minerals using micro Raman spectroscopy. Earth Planet. Sci. Lett., 198, pp. 511-519.
  • Yamamoto J., Ando J., Kagi H., Inoue T., Yamada A., Yamazaki D., Irifune T. (2008). In situ strength measurements on natural upper-mantle minerals. Physics and Chemistry of Minerals, 35, pp. 249-257.
  • Zhou M.-F., Robinson P.T., Malpas J., Li Z. (1996). Podiform Chromitites in the Luobusa Ophiolite (SouthernTibet): Implications for Melt-Rock Interaction and Chromite Segregation in the Upper Mantle. Journal of Petrology, 37(1), pp. 3-21.
  • Zhou M.-F., Malpas J., Robinson P.T., Sun M., Li J.-W. (2001). Crystallization of podiform chromitites from silicate magmas and the formation of nodular textures. Resource Geology, 51, pp. 1-6.
  • Zhou M.-F., Robinson P. (1994). High-Cr and high-Al podiform chromitites, western China: Relationship to partial melting and melt/rock reaction in the upper mantle. International Geology Review, 36, pp. 678-686.

Dmitry E. Saveliev
Institute of Geology of the Ufa Federal Research Centre of the Russian Academy of Sciences
16/2, Karl Marx st., Ufa, 450077, Russian Federation  

Victor B. Fedoseev
Razuvaev Institute of Organometallic Chemistry of the Russian Academy of Sciences
49, Tropinina st., 603950, Nizhny Novgorod, Russian Federation


For citation:

Saveliev D.E., Fedoseev V.B. (2019). Solid-state redistribution of mineral particles in the upwelling mantle flow as a mechanism of chromite concentration in the ophiolite ultramafic rocks (by the example of Kraka ophiolite, the Southern Urals). Georesursy = Georesources, 21(1), pp. 31-46. DOI: